TensorFlow Recorder 使用教程
2024-08-07 08:26:20作者:申梦珏Efrain
项目介绍
TensorFlow Recorder(TFRecorder)是一个开源项目,旨在简化从Pandas DataFrames和CSV文件(包含图像或结构化数据)创建TensorFlow记录(TFRecords)的过程。该项目由Google开发,特别适用于需要优化机器学习管道并充分利用硬件资源(无论是在云端还是本地)的场景。
项目快速启动
安装
首先,从GitHub克隆项目:
git clone https://github.com/google/tensorflow-recorder.git
进入项目目录并安装:
cd tensorflow-recorder
python setup.py install
或者通过PyPi安装:
pip install tfrecorder
生成TFRecords
以下是一个简单的示例,展示如何从Pandas DataFrame生成TFRecords:
import pandas as pd
import tfrecorder
# 创建一个示例DataFrame
data = {
'image_path': ['path/to/image1.jpg', 'path/to/image2.jpg'],
'label': [0, 1]
}
df = pd.DataFrame(data)
# 生成TFRecords
tfrecorder.create_tfrecords(df, output_dir='output')
应用案例和最佳实践
应用案例
TFRecorder特别适用于以下场景:
- 模型输入受限(读取数据影响训练时间)
- 任何时候你想使用
tf.Dataset - 当你的数据集无法放入内存时
最佳实践
- 数据预处理:在生成TFRecords之前,确保数据已经过适当的预处理。
- 批量处理:考虑使用批量处理来提高效率。
- 硬件优化:确保你的硬件配置(CPU/GPU)能够支持高效的TFRecord读取和处理。
典型生态项目
TFRecorder与以下TensorFlow生态项目紧密结合:
- TensorFlow Datasets:用于加载和准备数据集。
- TensorFlow Transform:用于预处理数据。
- TensorFlow Model Analysis:用于模型评估。
- TensorFlow Serving:用于模型部署。
这些项目共同构成了一个完整的机器学习工作流程,从数据准备到模型训练,再到部署和评估。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
276
暂无简介
Dart
696
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
674
仓颉编译器源码及 cjdb 调试工具。
C++
138
869