Tortoise-ORM 查询时排除指定字段的几种实现方式
2025-06-09 13:26:12作者:晏闻田Solitary
在使用 Tortoise-ORM 进行数据查询时,我们经常会遇到需要排除某些敏感字段(如用户密码)的场景。本文将深入探讨几种不同的实现方法,帮助开发者根据实际需求选择最适合的方案。
方法一:使用 Pydantic 模型转换
Tortoise-ORM 提供了与 Pydantic 的良好集成,可以通过定义 PydanticMeta 来排除特定字段:
from tortoise import Model
from tortoise.contrib.pydantic import pydantic_model_creator
class User(Model):
# 模型字段定义
class PydanticMeta:
exclude = ["password"] # 排除密码字段
User_Pydantic = pydantic_model_creator(User)
这种方法适合需要将 ORM 模型转换为 Pydantic 模型的场景,特别是在 API 开发中。它能够自动处理字段排除,且与 FastAPI 等框架配合良好。
方法二:自定义模型方法
如果不想引入 Pydantic,可以直接在 ORM 模型中添加自定义方法:
class User(Model):
# 模型字段定义
def model_dump(self) -> dict:
data = dict(self)
data.pop("password") # 移除密码字段
return data
这种方法简单直接,但需要注意:
- 所有字段仍会被从数据库查询出来
- 需要在每个需要排除字段的模型中实现该方法
- 适合简单的字段排除需求
方法三:动态字段选择
对于需要从数据库查询层面就排除字段的场景,可以使用动态字段选择:
class User(Model):
# 模型字段定义
@classmethod
def expose_fields(cls) -> List[str]:
attr = "_expose_fields"
if fs := getattr(cls, attr, None):
return fs
fields = [i for i in cls._meta.fields if i != "password"]
setattr(cls, attr, fields)
return fields
# 使用方式
users = await User.filter().values(*User.expose_fields())
这种方法的特点:
- 真正从数据库查询层面排除字段,提高查询效率
- 可以灵活定义需要包含的字段
- 适合对性能要求较高的场景
方法对比与选择建议
方法 | 查询效率 | 实现复杂度 | 适用场景 |
---|---|---|---|
Pydantic转换 | 低(查询所有字段) | 低 | API开发,需要模型验证 |
自定义方法 | 低(查询所有字段) | 中 | 简单场景,少量模型 |
动态字段选择 | 高(只查询所需字段) | 高 | 性能敏感场景 |
在实际开发中,建议:
- 对于简单的 API 开发,优先考虑 Pydantic 方案
- 对于性能敏感的核心业务,考虑动态字段选择
- 对于临时需求或简单场景,可以使用自定义方法
扩展思考
对于更复杂的场景,还可以考虑:
- 创建基类实现通用字段排除逻辑
- 使用装饰器动态修改查询字段
- 结合权限系统动态决定字段可见性
每种方法都有其适用场景,开发者应根据项目实际需求和技术栈选择最合适的实现方式。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
507

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
255
299

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5