Tortoise-ORM 查询时排除指定字段的几种实现方式
2025-06-09 07:47:11作者:晏闻田Solitary
在使用 Tortoise-ORM 进行数据查询时,我们经常会遇到需要排除某些敏感字段(如用户密码)的场景。本文将深入探讨几种不同的实现方法,帮助开发者根据实际需求选择最适合的方案。
方法一:使用 Pydantic 模型转换
Tortoise-ORM 提供了与 Pydantic 的良好集成,可以通过定义 PydanticMeta 来排除特定字段:
from tortoise import Model
from tortoise.contrib.pydantic import pydantic_model_creator
class User(Model):
# 模型字段定义
class PydanticMeta:
exclude = ["password"] # 排除密码字段
User_Pydantic = pydantic_model_creator(User)
这种方法适合需要将 ORM 模型转换为 Pydantic 模型的场景,特别是在 API 开发中。它能够自动处理字段排除,且与 FastAPI 等框架配合良好。
方法二:自定义模型方法
如果不想引入 Pydantic,可以直接在 ORM 模型中添加自定义方法:
class User(Model):
# 模型字段定义
def model_dump(self) -> dict:
data = dict(self)
data.pop("password") # 移除密码字段
return data
这种方法简单直接,但需要注意:
- 所有字段仍会被从数据库查询出来
- 需要在每个需要排除字段的模型中实现该方法
- 适合简单的字段排除需求
方法三:动态字段选择
对于需要从数据库查询层面就排除字段的场景,可以使用动态字段选择:
class User(Model):
# 模型字段定义
@classmethod
def expose_fields(cls) -> List[str]:
attr = "_expose_fields"
if fs := getattr(cls, attr, None):
return fs
fields = [i for i in cls._meta.fields if i != "password"]
setattr(cls, attr, fields)
return fields
# 使用方式
users = await User.filter().values(*User.expose_fields())
这种方法的特点:
- 真正从数据库查询层面排除字段,提高查询效率
- 可以灵活定义需要包含的字段
- 适合对性能要求较高的场景
方法对比与选择建议
| 方法 | 查询效率 | 实现复杂度 | 适用场景 |
|---|---|---|---|
| Pydantic转换 | 低(查询所有字段) | 低 | API开发,需要模型验证 |
| 自定义方法 | 低(查询所有字段) | 中 | 简单场景,少量模型 |
| 动态字段选择 | 高(只查询所需字段) | 高 | 性能敏感场景 |
在实际开发中,建议:
- 对于简单的 API 开发,优先考虑 Pydantic 方案
- 对于性能敏感的核心业务,考虑动态字段选择
- 对于临时需求或简单场景,可以使用自定义方法
扩展思考
对于更复杂的场景,还可以考虑:
- 创建基类实现通用字段排除逻辑
- 使用装饰器动态修改查询字段
- 结合权限系统动态决定字段可见性
每种方法都有其适用场景,开发者应根据项目实际需求和技术栈选择最合适的实现方式。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
暂无简介
Dart
568
127
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
261
24
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
119
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
447