首页
/ Tortoise-ORM 查询时排除指定字段的几种实现方式

Tortoise-ORM 查询时排除指定字段的几种实现方式

2025-06-09 12:55:01作者:晏闻田Solitary

在使用 Tortoise-ORM 进行数据查询时,我们经常会遇到需要排除某些敏感字段(如用户密码)的场景。本文将深入探讨几种不同的实现方法,帮助开发者根据实际需求选择最适合的方案。

方法一:使用 Pydantic 模型转换

Tortoise-ORM 提供了与 Pydantic 的良好集成,可以通过定义 PydanticMeta 来排除特定字段:

from tortoise import Model
from tortoise.contrib.pydantic import pydantic_model_creator

class User(Model):
    # 模型字段定义
    class PydanticMeta:
        exclude = ["password"]  # 排除密码字段

User_Pydantic = pydantic_model_creator(User)

这种方法适合需要将 ORM 模型转换为 Pydantic 模型的场景,特别是在 API 开发中。它能够自动处理字段排除,且与 FastAPI 等框架配合良好。

方法二:自定义模型方法

如果不想引入 Pydantic,可以直接在 ORM 模型中添加自定义方法:

class User(Model):
    # 模型字段定义
    
    def model_dump(self) -> dict:
        data = dict(self)
        data.pop("password")  # 移除密码字段
        return data

这种方法简单直接,但需要注意:

  1. 所有字段仍会被从数据库查询出来
  2. 需要在每个需要排除字段的模型中实现该方法
  3. 适合简单的字段排除需求

方法三:动态字段选择

对于需要从数据库查询层面就排除字段的场景,可以使用动态字段选择:

class User(Model):
    # 模型字段定义
    
    @classmethod
    def expose_fields(cls) -> List[str]:
        attr = "_expose_fields"
        if fs := getattr(cls, attr, None):
            return fs
        fields = [i for i in cls._meta.fields if i != "password"]
        setattr(cls, attr, fields)
        return fields

# 使用方式
users = await User.filter().values(*User.expose_fields())

这种方法的特点:

  1. 真正从数据库查询层面排除字段,提高查询效率
  2. 可以灵活定义需要包含的字段
  3. 适合对性能要求较高的场景

方法对比与选择建议

方法 查询效率 实现复杂度 适用场景
Pydantic转换 低(查询所有字段) API开发,需要模型验证
自定义方法 低(查询所有字段) 简单场景,少量模型
动态字段选择 高(只查询所需字段) 性能敏感场景

在实际开发中,建议:

  1. 对于简单的 API 开发,优先考虑 Pydantic 方案
  2. 对于性能敏感的核心业务,考虑动态字段选择
  3. 对于临时需求或简单场景,可以使用自定义方法

扩展思考

对于更复杂的场景,还可以考虑:

  1. 创建基类实现通用字段排除逻辑
  2. 使用装饰器动态修改查询字段
  3. 结合权限系统动态决定字段可见性

每种方法都有其适用场景,开发者应根据项目实际需求和技术栈选择最合适的实现方式。

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.93 K
kernelkernel
deepin linux kernel
C
22
6
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
423
392
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
64
511