Tortoise-ORM 查询时排除指定字段的几种实现方式
2025-06-09 20:46:29作者:晏闻田Solitary
在使用 Tortoise-ORM 进行数据查询时,我们经常会遇到需要排除某些敏感字段(如用户密码)的场景。本文将深入探讨几种不同的实现方法,帮助开发者根据实际需求选择最适合的方案。
方法一:使用 Pydantic 模型转换
Tortoise-ORM 提供了与 Pydantic 的良好集成,可以通过定义 PydanticMeta 来排除特定字段:
from tortoise import Model
from tortoise.contrib.pydantic import pydantic_model_creator
class User(Model):
# 模型字段定义
class PydanticMeta:
exclude = ["password"] # 排除密码字段
User_Pydantic = pydantic_model_creator(User)
这种方法适合需要将 ORM 模型转换为 Pydantic 模型的场景,特别是在 API 开发中。它能够自动处理字段排除,且与 FastAPI 等框架配合良好。
方法二:自定义模型方法
如果不想引入 Pydantic,可以直接在 ORM 模型中添加自定义方法:
class User(Model):
# 模型字段定义
def model_dump(self) -> dict:
data = dict(self)
data.pop("password") # 移除密码字段
return data
这种方法简单直接,但需要注意:
- 所有字段仍会被从数据库查询出来
- 需要在每个需要排除字段的模型中实现该方法
- 适合简单的字段排除需求
方法三:动态字段选择
对于需要从数据库查询层面就排除字段的场景,可以使用动态字段选择:
class User(Model):
# 模型字段定义
@classmethod
def expose_fields(cls) -> List[str]:
attr = "_expose_fields"
if fs := getattr(cls, attr, None):
return fs
fields = [i for i in cls._meta.fields if i != "password"]
setattr(cls, attr, fields)
return fields
# 使用方式
users = await User.filter().values(*User.expose_fields())
这种方法的特点:
- 真正从数据库查询层面排除字段,提高查询效率
- 可以灵活定义需要包含的字段
- 适合对性能要求较高的场景
方法对比与选择建议
| 方法 | 查询效率 | 实现复杂度 | 适用场景 |
|---|---|---|---|
| Pydantic转换 | 低(查询所有字段) | 低 | API开发,需要模型验证 |
| 自定义方法 | 低(查询所有字段) | 中 | 简单场景,少量模型 |
| 动态字段选择 | 高(只查询所需字段) | 高 | 性能敏感场景 |
在实际开发中,建议:
- 对于简单的 API 开发,优先考虑 Pydantic 方案
- 对于性能敏感的核心业务,考虑动态字段选择
- 对于临时需求或简单场景,可以使用自定义方法
扩展思考
对于更复杂的场景,还可以考虑:
- 创建基类实现通用字段排除逻辑
- 使用装饰器动态修改查询字段
- 结合权限系统动态决定字段可见性
每种方法都有其适用场景,开发者应根据项目实际需求和技术栈选择最合适的实现方式。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1