Tortoise-ORM 查询时排除指定字段的几种实现方式
2025-06-09 04:27:22作者:晏闻田Solitary
在使用 Tortoise-ORM 进行数据查询时,我们经常会遇到需要排除某些敏感字段(如用户密码)的场景。本文将深入探讨几种不同的实现方法,帮助开发者根据实际需求选择最适合的方案。
方法一:使用 Pydantic 模型转换
Tortoise-ORM 提供了与 Pydantic 的良好集成,可以通过定义 PydanticMeta 来排除特定字段:
from tortoise import Model
from tortoise.contrib.pydantic import pydantic_model_creator
class User(Model):
# 模型字段定义
class PydanticMeta:
exclude = ["password"] # 排除密码字段
User_Pydantic = pydantic_model_creator(User)
这种方法适合需要将 ORM 模型转换为 Pydantic 模型的场景,特别是在 API 开发中。它能够自动处理字段排除,且与 FastAPI 等框架配合良好。
方法二:自定义模型方法
如果不想引入 Pydantic,可以直接在 ORM 模型中添加自定义方法:
class User(Model):
# 模型字段定义
def model_dump(self) -> dict:
data = dict(self)
data.pop("password") # 移除密码字段
return data
这种方法简单直接,但需要注意:
- 所有字段仍会被从数据库查询出来
- 需要在每个需要排除字段的模型中实现该方法
- 适合简单的字段排除需求
方法三:动态字段选择
对于需要从数据库查询层面就排除字段的场景,可以使用动态字段选择:
class User(Model):
# 模型字段定义
@classmethod
def expose_fields(cls) -> List[str]:
attr = "_expose_fields"
if fs := getattr(cls, attr, None):
return fs
fields = [i for i in cls._meta.fields if i != "password"]
setattr(cls, attr, fields)
return fields
# 使用方式
users = await User.filter().values(*User.expose_fields())
这种方法的特点:
- 真正从数据库查询层面排除字段,提高查询效率
- 可以灵活定义需要包含的字段
- 适合对性能要求较高的场景
方法对比与选择建议
| 方法 | 查询效率 | 实现复杂度 | 适用场景 |
|---|---|---|---|
| Pydantic转换 | 低(查询所有字段) | 低 | API开发,需要模型验证 |
| 自定义方法 | 低(查询所有字段) | 中 | 简单场景,少量模型 |
| 动态字段选择 | 高(只查询所需字段) | 高 | 性能敏感场景 |
在实际开发中,建议:
- 对于简单的 API 开发,优先考虑 Pydantic 方案
- 对于性能敏感的核心业务,考虑动态字段选择
- 对于临时需求或简单场景,可以使用自定义方法
扩展思考
对于更复杂的场景,还可以考虑:
- 创建基类实现通用字段排除逻辑
- 使用装饰器动态修改查询字段
- 结合权限系统动态决定字段可见性
每种方法都有其适用场景,开发者应根据项目实际需求和技术栈选择最合适的实现方式。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.76 K
暂无简介
Dart
773
192
Ascend Extension for PyTorch
Python
343
405
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249