ts-rs v11.0.0发布:更强大的Rust到TypeScript类型转换工具
ts-rs是一个优秀的Rust库,它能够自动将Rust类型转换为TypeScript类型定义,极大地简化了前后端类型同步的工作。这个工具特别适合全栈开发场景,让开发者可以保持前后端类型系统的一致性,减少手动维护类型定义的工作量。
主要更新内容
1. 可选字段的批量声明
新版本引入了#[ts(optional_fields)]
属性,这是一个非常实用的功能。在之前的版本中,如果我们需要将一个结构体的所有字段都声明为可选,需要为每个字段单独添加#[ts(optional)]
属性。现在,只需要在结构体级别添加#[ts(optional_fields)]
就能实现同样的效果。
#[derive(TS)]
#[ts(optional_fields)]
struct Form {
first_name: Option<String>, // 生成 first_name?: string
last_name: Option<String>, // 生成 last_name?: string
email: Option<String>, // 生成 email?: string
}
这个特性特别适合处理表单数据或API请求体这类场景,其中很多字段都是可选的。
2. 增强的serde兼容性
ts-rs现在更好地与serde序列化库集成。当字段同时使用#[serde(skip_serializing_if)]
和#[serde(default)]
属性时,ts-rs会自动将这些字段转换为TypeScript中的可选属性。
#[derive(Serialize, Deserialize, TS)]
struct User {
#[serde(skip_serializing_if = "Option::is_none", default)]
nickname: Option<String>, // 生成 nickname?: string | null
}
这种改进确保了生成的TypeScript类型既能正确反映序列化行为,也能匹配反序列化需求,减少了类型不匹配的问题。
3. 更灵活的属性表达式
新版本允许在多个属性中使用任意Rust表达式,这为类型定义带来了更大的灵活性:
// 使用模块路径作为类型名称
#[derive(TS)]
#[ts(rename = module_path!().rsplit_once("::").unwrap().1)]
struct Model;
// 在文档注释中包含文件路径信息
#[derive(TS)]
#[doc = concat!("定义于 ", file!())]
struct UserGroup;
这个特性特别适合大型项目或代码生成场景,可以实现更动态的类型定义方式。
4. 元组结构体的可选字段
现在可以在元组结构体中使用#[ts(optional)]
属性标记可选字段:
#[derive(TS)]
struct Location(Country, State, #[ts(optional)] City); // 生成 [Country, State, City?]
这使得元组结构体的类型转换更加灵活,能够更好地表达各种数据结构。
升级注意事项
从v10升级到v11时需要注意以下几点:
-
当同时使用
#[serde(skip_serializing(_if))]
和#[serde(default)]
时,字段现在会被转换为可选属性。如果不需要这种行为,可以使用#[ts(optional = false)]
显式禁用。 -
ts_rs::TS
trait的API有微小调整,大多数用户不会受到影响,但如果直接与这个trait交互,可能需要做少量调整。
技术实现亮点
-
更智能的serde属性处理:通过分析serde属性组合,自动推断出最合适的TypeScript类型表示。
-
表达式支持:利用Rust的宏系统,实现了对任意表达式的解析和求值,大大增强了属性的表达能力。
-
类型系统改进:优化了内部类型表示,使得可选类型的处理更加一致和可靠。
适用场景
ts-rs v11.0.0特别适合以下场景:
-
全栈TypeScript项目:保持前后端类型定义完全同步。
-
API文档生成:结合Swagger或其他文档工具,自动生成准确的类型定义。
-
大型项目维护:减少手动维护类型定义的工作量,提高开发效率。
-
动态类型需求:利用新的表达式支持,实现更灵活的类型生成逻辑。
这个版本的发布标志着ts-rs在Rust和TypeScript互操作领域又迈出了重要一步,为开发者提供了更强大、更灵活的类型转换能力。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









