MLSD 开源项目安装与使用教程
2024-09-16 03:17:36作者:滕妙奇
1. 项目目录结构及介绍
MLSD(M-LSD: Towards Light-weight and Real-time Line Segment Detection)是一个用于直线检测的开源项目。以下是项目的目录结构及其介绍:
mlsd/
├── configs/ # 配置文件目录
│ ├── default.yaml # 默认配置文件
│ └── ...
├── data/ # 数据目录
│ ├── datasets/ # 数据集目录
│ └── ...
├── models/ # 模型目录
│ ├── mlsd.py # MLSD 模型定义
│ └── ...
├── scripts/ # 脚本目录
│ ├── train.py # 训练脚本
│ ├── test.py # 测试脚本
│ └── ...
├── utils/ # 工具函数目录
│ ├── metrics.py # 评估指标函数
│ └── ...
├── README.md # 项目说明文件
├── requirements.txt # 依赖包列表
└── setup.py # 安装脚本
1.1 configs/
目录
该目录包含项目的配置文件,其中 default.yaml
是默认配置文件,定义了训练和测试的参数。
1.2 data/
目录
该目录用于存放数据集,datasets/
子目录用于存放具体的数据集文件。
1.3 models/
目录
该目录包含 MLSD 模型的定义文件 mlsd.py
,以及其他可能的模型文件。
1.4 scripts/
目录
该目录包含项目的脚本文件,如 train.py
用于训练模型,test.py
用于测试模型。
1.5 utils/
目录
该目录包含一些工具函数,如 metrics.py
用于定义评估指标。
1.6 README.md
文件
项目的说明文件,包含项目的基本介绍、安装步骤、使用方法等。
1.7 requirements.txt
文件
列出了项目所需的依赖包。
1.8 setup.py
文件
用于安装项目的脚本文件。
2. 项目的启动文件介绍
2.1 train.py
train.py
是用于训练 MLSD 模型的启动文件。通过该文件,用户可以指定配置文件、数据集路径等参数来启动训练过程。
python scripts/train.py --config configs/default.yaml --data data/datasets/my_dataset
2.2 test.py
test.py
是用于测试 MLSD 模型的启动文件。用户可以通过该文件加载训练好的模型并进行测试。
python scripts/test.py --config configs/default.yaml --model models/my_model.pth
3. 项目的配置文件介绍
3.1 default.yaml
default.yaml
是 MLSD 项目的默认配置文件,定义了训练和测试过程中所需的参数。以下是配置文件的部分内容示例:
# 数据集配置
dataset:
name: "my_dataset"
path: "data/datasets/my_dataset"
# 模型配置
model:
name: "mlsd"
input_size: 512
# 训练配置
train:
batch_size: 16
epochs: 100
learning_rate: 0.001
# 测试配置
test:
batch_size: 8
3.2 配置文件参数说明
dataset
: 定义数据集的名称和路径。model
: 定义模型的名称和输入尺寸。train
: 定义训练过程中的批量大小、训练轮数和学习率。test
: 定义测试过程中的批量大小。
通过修改 default.yaml
文件中的参数,用户可以自定义训练和测试过程。
以上是 MLSD 开源项目的安装与使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这份文档能帮助你顺利安装和使用 MLSD 项目。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
295
331

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
18
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58