MLSD 开源项目安装与使用教程
2024-09-16 06:22:14作者:滕妙奇
1. 项目目录结构及介绍
MLSD(M-LSD: Towards Light-weight and Real-time Line Segment Detection)是一个用于直线检测的开源项目。以下是项目的目录结构及其介绍:
mlsd/
├── configs/ # 配置文件目录
│ ├── default.yaml # 默认配置文件
│ └── ...
├── data/ # 数据目录
│ ├── datasets/ # 数据集目录
│ └── ...
├── models/ # 模型目录
│ ├── mlsd.py # MLSD 模型定义
│ └── ...
├── scripts/ # 脚本目录
│ ├── train.py # 训练脚本
│ ├── test.py # 测试脚本
│ └── ...
├── utils/ # 工具函数目录
│ ├── metrics.py # 评估指标函数
│ └── ...
├── README.md # 项目说明文件
├── requirements.txt # 依赖包列表
└── setup.py # 安装脚本
1.1 configs/ 目录
该目录包含项目的配置文件,其中 default.yaml 是默认配置文件,定义了训练和测试的参数。
1.2 data/ 目录
该目录用于存放数据集,datasets/ 子目录用于存放具体的数据集文件。
1.3 models/ 目录
该目录包含 MLSD 模型的定义文件 mlsd.py,以及其他可能的模型文件。
1.4 scripts/ 目录
该目录包含项目的脚本文件,如 train.py 用于训练模型,test.py 用于测试模型。
1.5 utils/ 目录
该目录包含一些工具函数,如 metrics.py 用于定义评估指标。
1.6 README.md 文件
项目的说明文件,包含项目的基本介绍、安装步骤、使用方法等。
1.7 requirements.txt 文件
列出了项目所需的依赖包。
1.8 setup.py 文件
用于安装项目的脚本文件。
2. 项目的启动文件介绍
2.1 train.py
train.py 是用于训练 MLSD 模型的启动文件。通过该文件,用户可以指定配置文件、数据集路径等参数来启动训练过程。
python scripts/train.py --config configs/default.yaml --data data/datasets/my_dataset
2.2 test.py
test.py 是用于测试 MLSD 模型的启动文件。用户可以通过该文件加载训练好的模型并进行测试。
python scripts/test.py --config configs/default.yaml --model models/my_model.pth
3. 项目的配置文件介绍
3.1 default.yaml
default.yaml 是 MLSD 项目的默认配置文件,定义了训练和测试过程中所需的参数。以下是配置文件的部分内容示例:
# 数据集配置
dataset:
name: "my_dataset"
path: "data/datasets/my_dataset"
# 模型配置
model:
name: "mlsd"
input_size: 512
# 训练配置
train:
batch_size: 16
epochs: 100
learning_rate: 0.001
# 测试配置
test:
batch_size: 8
3.2 配置文件参数说明
dataset: 定义数据集的名称和路径。model: 定义模型的名称和输入尺寸。train: 定义训练过程中的批量大小、训练轮数和学习率。test: 定义测试过程中的批量大小。
通过修改 default.yaml 文件中的参数,用户可以自定义训练和测试过程。
以上是 MLSD 开源项目的安装与使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这份文档能帮助你顺利安装和使用 MLSD 项目。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
115
仓颉编译器源码及 cjdb 调试工具。
C++
138
869