LibreNMS 24.12版本更新后RRD文件磁盘使用量激增问题分析
问题现象
在将LibreNMS从24.11版本升级到24.12版本后,用户报告系统磁盘使用量显著增加。具体表现为:
- 磁盘I/O操作从约500次/秒增加到1400次/秒
- 单个设备(如Cisco Catalyst C9400)的RRD数据量达到6.3GB
- 测试环境中,全新安装24.11版本后添加设备,24小时内生成3036个RRD文件,占用1.9GB空间
- 升级到24.12版本并重新发现设备后,RRD文件数量增加到5737个,占用空间达到3.8GB
问题原因分析
经过调查,发现磁盘使用量激增的主要原因与QoS监控模块的变化有关:
-
模块名称变更:在24.11版本中,Cisco设备默认使用"Cisco CBQOS"模块,该模块在之前的版本中默认是全局禁用的。而在24.12版本中,该模块被替换为"QoS"模块,并且默认情况下是全局启用的。
-
监控数据增加:新启用的QoS模块会为每个端口生成额外的RRD文件,文件名格式为"port-XX-cbqos-XXXX-XXXXX.rrd"。这些新增的监控数据文件直接导致了磁盘使用量的增加。
-
索引值变化:部分更新可能改变了传感器的索引值,导致系统同时保留新旧两个版本的RRD文件,进一步增加了磁盘占用。
技术背景
RRD(Round Robin Database)是LibreNMS用于存储时间序列数据的核心组件。每个被监控的指标(如端口流量、CPU使用率等)都会生成一个对应的RRD文件。这些文件具有以下特点:
- 固定大小设计,不会无限增长
- 采用环形存储结构,自动覆盖旧数据
- 支持多种数据聚合和归档策略
在LibreNMS中,RRD文件通常位于设备的子目录中,按监控指标类型分类存储。
解决方案
对于遇到类似问题的用户,可以考虑以下解决方案:
-
评估QoS监控需求:如果不需要详细的QoS监控数据,可以在系统设置中禁用QoS模块。
-
清理旧RRD文件:使用rrdtool工具检查并清理因索引变更而产生的重复RRD文件。
-
调整数据保留策略:修改RRD文件的归档设置,减少历史数据的保留精度或时长。
-
扩展存储容量:如果确实需要完整的监控数据,考虑为系统增加存储空间。
最佳实践建议
-
升级前评估:在进行主要版本升级前,建议在测试环境中评估磁盘使用变化。
-
监控配置审查:定期审查启用的监控模块,确保只收集实际需要的数据。
-
存储规划:根据设备数量和监控指标,合理规划存储容量,预留足够的增长空间。
-
性能监控:持续关注系统I/O性能,确保RRD写入操作不会影响整体系统性能。
通过以上分析和建议,用户可以根据自身需求合理配置LibreNMS的监控功能,在数据完整性和系统资源消耗之间取得平衡。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~057CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









