深度数学项目安装与配置指南
2025-04-18 07:54:17作者:董斯意
1. 项目基础介绍
深度数学(DeepMath)是一个大规模、具有挑战性、经过净化和可验证的数学数据集,旨在推动语言模型在数学推理方面的边界。该项目包含了一个精心策划的数据集,涵盖了代数、微积分、数论、几何、概率和离散数学等多个领域的难题。
主要编程语言:Python
2. 项目使用的关键技术和框架
- Python:项目的主要编程语言。
- Ray:用于分布式训练的框架。
- Torch:用于深度学习的框架。
- Transformers:用于构建和训练转换器模型的库。
- Math-Verify:用于数学问题验证的库。
- ANTLR:用于解析数学表达式的库。
3. 项目安装和配置的准备工作
在开始安装之前,请确保您的系统满足以下要求:
- Python 3.12.2
- Git
- Conda(推荐使用Anaconda)
- CUDA(如果使用GPU)
详细安装步骤
步骤 1:克隆项目仓库
首先,使用Git克隆项目仓库:
git clone --recurse-submodules https://github.com/zwhe99/DeepMath.git
cd DeepMath
步骤 2:创建虚拟环境
创建一个名为deepmath的虚拟环境,并激活它:
conda create -y -n deepmath python=3.12.2
conda activate deepmath
步骤 3:安装依赖
安装项目所需的所有依赖:
pip3 install ray[default]
pip3 install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu124
pip3 install flash-attn==2.7.4.post1 --no-build-isolation
pip3 install omegaconf==2.4.0.dev3 hydra-core==1.4.0.dev1 antlr4-python3-runtime==4.11.0 vllm==0.7.3
pip3 install math-verify[antlr4_11_0]==0.7.0 fire deepspeed tensorboardX prettytable datasets transformers==4.49.0
pip3 install -e verl
步骤 4:准备数据
将数据集放置在指定目录,例如/path/to/your/data,然后运行以下命令进行数据预处理:
python3 verl/examples/data_preprocess/deepmath_103k.py --local_dir $DATA_DIR
步骤 5:启动Ray
根据您的硬件配置,启动Ray的head节点和worker节点:
- Head节点(单节点):
ray start --head --port=6379 --node-ip-address=$HEAD_ADDR --num-gpus=8
- Worker节点(多个节点):
ray start --address=$HEAD_ADDR:6379 --node-ip-address=$WORKER_ADDR --num-gpus=8
步骤 6:开始训练
在head节点上启动训练脚本,具体的脚本路径可以在项目的scripts/train目录下找到。
以上就是深度数学项目的详细安装和配置指南。遵循这些步骤,您应该能够成功安装并运行该项目。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0125
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
436
3.32 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
771
382
Ascend Extension for PyTorch
Python
246
283
暂无简介
Dart
699
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
273
328
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
272
125
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
仓颉编译器源码及 cjdb 调试工具。
C++
139
871