FiftyOne项目支持YOLO模型在Apple Silicon上的MPS加速
在计算机视觉领域,硬件加速对于提高模型推理速度至关重要。FiftyOne作为一个强大的计算机视觉工具包,最近在其模型动物园(zoo)功能中增强了对Apple Silicon芯片(M1/M2等)的Metal Performance Shaders(MPS)加速支持。
背景与问题
Apple Silicon芯片通过MPS框架提供了GPU加速能力,PyTorch从1.12版本开始正式支持MPS后端。FiftyOne的模型动物园功能允许用户轻松加载预训练模型,但在使用YOLO系列模型时,虽然可以正常运行推理,却无法充分利用MPS硬件加速能力。
技术分析
通过深入分析发现,FiftyOne在处理YOLO模型时存在设备传递的机制问题。虽然基础功能如ResNet模型可以正常使用MPS加速,但YOLO模型需要额外的设备配置步骤。核心问题在于模型加载后没有正确地将模型权重转移到MPS设备上。
解决方案
经过社区贡献者的修复,现在可以通过两种方式实现YOLO模型的MPS加速:
- 标准方式:通过FiftyOne模型动物园直接加载
import fiftyone as fo
import fiftyone.zoo as foz
dataset = foz.load_zoo_dataset("quickstart")
model = foz.load_zoo_model("yolov8x-world-torch", device="mps")
dataset.apply_model(model, label_field="predictions")
- 直接操作方式:使用Ultralytics库手动转移模型
from ultralytics import YOLO
import fiftyone.zoo as foz
model = YOLO(model_path).to("mps") # 显式转移到MPS设备
dataset = foz.load_zoo_dataset("quickstart")
dataset.apply_model(model, label_field="predictions")
实现原理
修复的核心在于确保模型权重正确转移到指定的计算设备。在PyTorch中,模型和输入数据需要在同一设备上才能进行计算。对于Apple Silicon设备,MPS后端提供了接近原生Metal性能的加速能力。
性能考量
启用MPS加速后,YOLO模型的推理速度在Apple Silicon设备上可提升2-5倍,具体取决于模型复杂度和输入尺寸。需要注意的是,某些操作可能还不完全支持MPS后端,可以设置环境变量PYTORCH_ENABLE_MPS_FALLBACK=1来启用CPU回退机制。
最佳实践
- 始终检查MPS可用性:
import torch
print(f"MPS可用: {torch.backends.mps.is_available()}")
print(f"MPS已构建: {torch.backends.mps.is_built()}")
- 对于大型模型,建议分批处理数据以避免内存问题
- 监控GPU利用率以确保加速生效
总结
FiftyOne通过这次更新,完善了对Apple Silicon设备的支持,使开发者能够在Mac平台上高效运行YOLO等先进的计算机视觉模型。这一改进特别有利于移动开发和原型设计场景,让开发者能够在本地快速迭代和测试模型。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00