首页
/ FiftyOne项目支持YOLO模型在Apple Silicon上的MPS加速

FiftyOne项目支持YOLO模型在Apple Silicon上的MPS加速

2025-05-25 12:02:38作者:郜逊炳

在计算机视觉领域,硬件加速对于提高模型推理速度至关重要。FiftyOne作为一个强大的计算机视觉工具包,最近在其模型动物园(zoo)功能中增强了对Apple Silicon芯片(M1/M2等)的Metal Performance Shaders(MPS)加速支持。

背景与问题

Apple Silicon芯片通过MPS框架提供了GPU加速能力,PyTorch从1.12版本开始正式支持MPS后端。FiftyOne的模型动物园功能允许用户轻松加载预训练模型,但在使用YOLO系列模型时,虽然可以正常运行推理,却无法充分利用MPS硬件加速能力。

技术分析

通过深入分析发现,FiftyOne在处理YOLO模型时存在设备传递的机制问题。虽然基础功能如ResNet模型可以正常使用MPS加速,但YOLO模型需要额外的设备配置步骤。核心问题在于模型加载后没有正确地将模型权重转移到MPS设备上。

解决方案

经过社区贡献者的修复,现在可以通过两种方式实现YOLO模型的MPS加速:

  1. 标准方式:通过FiftyOne模型动物园直接加载
import fiftyone as fo
import fiftyone.zoo as foz

dataset = foz.load_zoo_dataset("quickstart")
model = foz.load_zoo_model("yolov8x-world-torch", device="mps")
dataset.apply_model(model, label_field="predictions")
  1. 直接操作方式:使用Ultralytics库手动转移模型
from ultralytics import YOLO
import fiftyone.zoo as foz

model = YOLO(model_path).to("mps")  # 显式转移到MPS设备
dataset = foz.load_zoo_dataset("quickstart")
dataset.apply_model(model, label_field="predictions")

实现原理

修复的核心在于确保模型权重正确转移到指定的计算设备。在PyTorch中,模型和输入数据需要在同一设备上才能进行计算。对于Apple Silicon设备,MPS后端提供了接近原生Metal性能的加速能力。

性能考量

启用MPS加速后,YOLO模型的推理速度在Apple Silicon设备上可提升2-5倍,具体取决于模型复杂度和输入尺寸。需要注意的是,某些操作可能还不完全支持MPS后端,可以设置环境变量PYTORCH_ENABLE_MPS_FALLBACK=1来启用CPU回退机制。

最佳实践

  1. 始终检查MPS可用性:
import torch
print(f"MPS可用: {torch.backends.mps.is_available()}")
print(f"MPS已构建: {torch.backends.mps.is_built()}")
  1. 对于大型模型,建议分批处理数据以避免内存问题
  2. 监控GPU利用率以确保加速生效

总结

FiftyOne通过这次更新,完善了对Apple Silicon设备的支持,使开发者能够在Mac平台上高效运行YOLO等先进的计算机视觉模型。这一改进特别有利于移动开发和原型设计场景,让开发者能够在本地快速迭代和测试模型。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
24
7
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
309
2.71 K
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
361
2.88 K
flutter_flutterflutter_flutter
暂无简介
Dart
599
133
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.07 K
616
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
636
233
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
774
74
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
cangjie_toolscangjie_tools
仓颉编程语言命令行工具,包括仓颉包管理工具、仓颉格式化工具、仓颉多语言桥接工具及仓颉语言服务。
C++
55
816
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
464