Apache TinkerPop 使用教程
2024-08-07 16:25:13作者:魏侃纯Zoe
项目介绍
Apache TinkerPop 是一个图计算框架,为图数据库(OLTP)和图分析系统(OLAP)提供图计算能力。TinkerPop 允许开发者通过 Gremlin 查询语言来操作图数据,支持多种编程语言和工具,是一个成熟且广泛使用的开源项目。
项目快速启动
环境准备
- Java 11 或更高版本
- Maven
克隆项目
git clone https://github.com/apache/tinkerpop.git
cd tinkerpop
构建项目
mvn clean install -DskipTests
运行示例
import org.apache.tinkerpop.gremlin.process.traversal.dsl.graph.GraphTraversalSource;
import org.apache.tinkerpop.gremlin.structure.Graph;
import org.apache.tinkerpop.gremlin.structure.T;
import org.apache.tinkerpop.gremlin.structure.Vertex;
import org.apache.tinkerpop.gremlin.tinkergraph.structure.TinkerGraph;
public class QuickStart {
public static void main(String[] args) {
Graph graph = TinkerGraph.open();
GraphTraversalSource g = graph.traversal();
Vertex marko = g.addV("person").property(T.id, 1).property("name", "marko").next();
Vertex vadas = g.addV("person").property(T.id, 2).property("name", "vadas").next();
g.addE("knows").from(marko).to(vadas).property(T.id, 1).next();
System.out.println(g.V(1).valueMap(true).next());
}
}
应用案例和最佳实践
案例一:Netflix 数据血缘
Netflix 使用 TinkerPop 构建和扩展数据血缘,以提高其数据基础设施的可靠性和效率。他们使用 Gremlin 和 REST Lineage Service 对图数据库进行操作。
案例二:Amundsen 数据发现
Amundsen 是一个开源的数据发现和元数据引擎,用于提高数据分析师、数据科学家和工程师与数据交互时的生产力。它支持 Apache TinkerPop 作为后端图数据库。
最佳实践
- 选择合适的图数据库:根据需求选择支持 TinkerPop 的图数据库,如 JanusGraph、Neo4j 等。
- 优化查询性能:使用索引和合适的遍历策略来优化 Gremlin 查询性能。
- 社区支持:积极参与 TinkerPop 社区,获取最新的开发动态和技术支持。
典型生态项目
JanusGraph
JanusGraph 是一个开源的分布式图数据库,支持 TinkerPop 接口,适用于大规模图数据的存储和查询。
Neo4j
Neo4j 是一个流行的图数据库,也支持 TinkerPop 接口,提供强大的图数据处理能力。
Gremlin Server
Gremlin Server 是 TinkerPop 提供的一个服务端组件,允许通过各种协议(如 WebSocket、HTTP)与图数据库进行交互。
Gremlin Console
Gremlin Console 是一个交互式 shell,用于快速测试和调试 Gremlin 查询。
通过以上内容,您可以快速了解和上手 Apache TinkerPop,并探索其在实际应用中的广泛用途和最佳实践。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248