Apache TinkerPop 使用教程
2024-08-07 16:25:13作者:魏侃纯Zoe
项目介绍
Apache TinkerPop 是一个图计算框架,为图数据库(OLTP)和图分析系统(OLAP)提供图计算能力。TinkerPop 允许开发者通过 Gremlin 查询语言来操作图数据,支持多种编程语言和工具,是一个成熟且广泛使用的开源项目。
项目快速启动
环境准备
- Java 11 或更高版本
- Maven
克隆项目
git clone https://github.com/apache/tinkerpop.git
cd tinkerpop
构建项目
mvn clean install -DskipTests
运行示例
import org.apache.tinkerpop.gremlin.process.traversal.dsl.graph.GraphTraversalSource;
import org.apache.tinkerpop.gremlin.structure.Graph;
import org.apache.tinkerpop.gremlin.structure.T;
import org.apache.tinkerpop.gremlin.structure.Vertex;
import org.apache.tinkerpop.gremlin.tinkergraph.structure.TinkerGraph;
public class QuickStart {
public static void main(String[] args) {
Graph graph = TinkerGraph.open();
GraphTraversalSource g = graph.traversal();
Vertex marko = g.addV("person").property(T.id, 1).property("name", "marko").next();
Vertex vadas = g.addV("person").property(T.id, 2).property("name", "vadas").next();
g.addE("knows").from(marko).to(vadas).property(T.id, 1).next();
System.out.println(g.V(1).valueMap(true).next());
}
}
应用案例和最佳实践
案例一:Netflix 数据血缘
Netflix 使用 TinkerPop 构建和扩展数据血缘,以提高其数据基础设施的可靠性和效率。他们使用 Gremlin 和 REST Lineage Service 对图数据库进行操作。
案例二:Amundsen 数据发现
Amundsen 是一个开源的数据发现和元数据引擎,用于提高数据分析师、数据科学家和工程师与数据交互时的生产力。它支持 Apache TinkerPop 作为后端图数据库。
最佳实践
- 选择合适的图数据库:根据需求选择支持 TinkerPop 的图数据库,如 JanusGraph、Neo4j 等。
- 优化查询性能:使用索引和合适的遍历策略来优化 Gremlin 查询性能。
- 社区支持:积极参与 TinkerPop 社区,获取最新的开发动态和技术支持。
典型生态项目
JanusGraph
JanusGraph 是一个开源的分布式图数据库,支持 TinkerPop 接口,适用于大规模图数据的存储和查询。
Neo4j
Neo4j 是一个流行的图数据库,也支持 TinkerPop 接口,提供强大的图数据处理能力。
Gremlin Server
Gremlin Server 是 TinkerPop 提供的一个服务端组件,允许通过各种协议(如 WebSocket、HTTP)与图数据库进行交互。
Gremlin Console
Gremlin Console 是一个交互式 shell,用于快速测试和调试 Gremlin 查询。
通过以上内容,您可以快速了解和上手 Apache TinkerPop,并探索其在实际应用中的广泛用途和最佳实践。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C026
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
423
3.25 K
Ascend Extension for PyTorch
Python
231
262
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
331
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
仓颉编译器源码及 cjdb 调试工具。
C++
136
869