Iridescence 3D 可视化库快速入门与实践指南
项目介绍
Iridescence 是一个轻量级的3D可视化库,专为加速3D算法的原型设计而生。该库特别适合于点云相关算法的研究与开发,并非旨在成为一个具备丰富渲染能力的通用可视化工具。它在Ubuntu 20.04/22.04/24.04上运行良好,提供了易于使用的3D视觉框架,特别是在点云渲染方面。通过集成Dear ImGui,它支持快速UI设计。
项目快速启动
安装依赖及源码编译安装
首先确保你的系统是Ubuntu 20.04及以上版本,并更新包列表。然后,执行以下命令安装必要的依赖项:
sudo apt-get install -y libglm-dev libglfw3-dev libpng-dev libjpeg-dev libeigen3-dev
接下来,克隆Iridescence的仓库并构建它:
git clone https://github.com/koide3/iridescence --recursive
cd iridescence/build
cmake ..
make -j
sudo make install
如果你还需要Python绑定,可以执行:
pip install .
以及可选的自动补全stub文件生成:
pip install pybind11-stubgen
cd ~/local/lib/python3.x/site-packages
pybind11-stubgen -o <module_name> --ignore-invalid=all pyridescence
快速示例
C++ 示例
编辑一个新的.cpp文件,使用下面的代码来创建一个简单的点云可视化程序:
#include <glk/primitives/primitives.hpp>
#include <guik/viewer/light_viewer.hpp>
int main(int argc, char** argv) {
auto viewer = guik::LightViewer::instance();
float angle = 0.0f;
viewer->register_ui_callback("ui", [&]() {
ImGui::DragFloat("Angle", &angle, 0.01f);
if (ImGui::Button("Close")) viewer->close();
});
while (viewer->spin_once()) {
Eigen::AngleAxisf transform(angle, Eigen::Vector3f::UnitZ());
viewer->update_drawable("sphere", glk::Primitives::sphere(), guik::Rainbow(transform));
}
return 0;
}
编译并运行上述代码以查看效果。
Python 示例
如果你更偏好Python,可以这样做:
import numpy
from scipy.spatial.transform import Rotation
from pyridescence import *
viewer = guik.LightViewer.instance()
angle = 0.0
def ui_callback():
global angle
angle = imgui.drag_float('angle', angle, 0.01)
if imgui.button('close'):
viewer.close()
viewer.register_ui_callback('ui', ui_callback)
while viewer.spin_once():
transform = numpy.identity(4)
transform[:3, :3] = Rotation.from_rotvec([0, 0, angle]).as_matrix()
viewer.update_drawable('sphere', glk.primitives.sphere(), guik.Rainbow(transform))
记得先安装Python接口才能运行上面的脚本。
应用案例和最佳实践
Iridescence特别适用于点云处理和3D算法的研发环境,例如,在快速验证新的点云过滤或配准算法时。最佳实践包括利用其内置的Dear ImGui界面快速搭建交互式控制面板,来实时调整参数并观察效果变化。
典型生态项目
虽然Iridescence本身是一个独立的项目,它在学术界和一些特定的工业研发流程中找到了自己的位置,尤其对于那些需要高效迭代3D算法的研究人员和开发者来说。然而,具体到“典型生态项目”,Iridescence主要作为科研和个人项目中的辅助工具,并没有明确的“生态”一说,因为它的定位更多是作为一个研究和原型设计的工具,而不是构成一个大型软件生态系统的一部分。开发者通常会在处理LiDAR数据、三维重建或是SLAM(Simultaneous Localization And Mapping)等项目中使用它,但这些应用案例分散在不同的个人和机构项目之中,而非形成集中展示的生态。
通过遵循以上步骤,你可以迅速开始使用Iridescence进行3D算法的原型设计与测试。无论是学术研究还是工程应用,Iridescence都能提供便捷的可视化支持。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00