OSHI项目6.7.0版本发布:系统硬件信息监控的新进展
OSHI(Operating System and Hardware Information)是一个开源的Java库,它能够帮助开发者获取操作系统和硬件相关的详细信息。作为一个跨平台的工具,OSHI支持Windows、Linux、macOS等多种操作系统,可以方便地获取系统信息如CPU、内存、磁盘、网络、传感器等数据,是系统监控和性能分析的重要工具。
新版本亮点
在最新发布的6.7.0版本中,OSHI带来了几项重要的改进和新功能,进一步增强了其在系统监控领域的能力。
Windows传感器信息获取增强
本次更新最显著的变化是引入了通过jLibreHardwareMonitor获取Windows传感器信息的功能。这一改进解决了长期以来Windows平台上硬件传感器数据获取不够全面的问题。现在开发者可以更准确地获取包括温度、风扇转速、电压等在内的各类传感器数据,这对于系统健康监控和性能分析尤为重要。
EDID制造商ID读取修复
版本修复了EdidUtil.getManufacturerID()方法未能正确读取ID所有位的问题。EDID(Extended Display Identification Data)是显示器用来向计算机描述其功能的数据标准,其中制造商ID是重要标识。这个修复确保了显示器制造商信息的准确获取,对于多显示器环境管理和显示设备识别具有重要意义。
Linux设备树模型处理优化
针对Linux系统,新版本改进了/proc/device-tree/model文件的处理方式,现在会自动修剪尾部的NUL字符。设备树是Linux系统中描述硬件配置的重要机制,这一优化使得获取的设备模型信息更加干净准确,避免了潜在的字符串处理问题。
技术意义与应用场景
OSHI 6.7.0版本的这些改进虽然看似细微,但对于系统监控工具的开发者来说却意义重大。Windows传感器信息的增强使得基于Java开发的系统监控工具能够提供更全面的硬件状态报告,特别适合服务器监控、游戏PC性能分析等场景。EDID读取的修复则提升了多显示器工作环境下的设备识别可靠性,对于图形工作站管理很有帮助。
总结
OSHI项目持续在系统信息获取领域深耕,6.7.0版本再次证明了其在跨平台硬件监控方面的价值。这些改进不仅增强了功能性,也提高了数据准确性,使得基于OSHI开发的应用程序能够为用户提供更可靠、更全面的系统信息。对于需要深度系统监控功能的Java开发者来说,升级到最新版本将能获得更好的开发体验和更准确的数据支持。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00