Rerun 0.22.1版本发布:LeRobot数据集原生支持与多项改进
Rerun是一个面向多模态和时间序列数据的可视化分析工具包,它提供了简单易用的数据库和可视化功能,帮助开发者高效处理复杂的时空数据。通过Rerun,用户可以轻松记录、存储和可视化各种传感器数据、3D场景、图像序列等信息。
LeRobot数据集原生加载支持
本次0.22.1版本最显著的改进是增加了对LeRobot数据集的原生支持。LeRobot是一个流行的机器人数据集集合,包含各种机器人操作和感知数据。Rerun现在可以直接加载这些数据集,无需繁琐的数据转换过程。
虽然目前这一功能还在逐步完善中,但已经能够处理大部分常见的数据格式。开发团队表示,在接下来的0.23版本中会进一步优化这一功能,增加对更多边缘情况的支持。如果你在使用过程中遇到任何问题,团队鼓励用户积极反馈,以帮助他们更快地改进产品。
关键改进与修复
Python API兼容性
针对即将发布的NumPy 2.0版本,Rerun移除了对np.float_的使用,确保在新旧版本的NumPy上都能稳定运行。这一改动体现了Rerun对长期兼容性的重视。
数据可视化修复
修复了Arrows2D绘制顺序无效的问题,现在用户可以更精确地控制2D箭头的显示层次。同时改进了图像列更新示例,使其更直观地展示Rerun的动态数据更新能力。
性能优化
LeRobot数据集现在会在单独的IO线程上加载,避免阻塞主线程,提升了用户体验的流畅性。这一改进特别有利于处理大型数据集时的性能表现。
使用建议
对于机器人开发者和计算机视觉研究人员,新版本提供了更便捷的数据可视化方案。特别是处理LeRobot数据集时,可以直接利用Rerun的原生支持功能,快速验证算法效果或进行数据分析。
对于Python开发者,建议检查项目中是否使用了即将废弃的NumPy API,确保与Rerun的兼容性。如果项目中涉及大量2D箭头可视化,升级到0.22.1版本将解决之前存在的绘制顺序问题。
Rerun团队持续关注用户体验,这个版本虽然是小版本更新,但包含了对多个关键问题的修复和功能优化,值得用户升级以获得更稳定的使用体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00