使用Criterion测试框架验证程序退出码的方法
概述
在C/C++程序开发中,有时需要测试函数是否会按预期退出程序并返回特定的退出码。Criterion测试框架提供了专门的功能来验证这种情况。本文将详细介绍如何使用Criterion框架测试程序的退出行为。
退出码测试的基本概念
在Unix/Linux系统中,程序通过调用exit()
函数终止执行,并返回一个退出状态码。按照惯例,0表示成功,非零值表示各种错误情况。在单元测试中,我们经常需要验证某些函数在特定条件下是否会正确退出并返回预期的状态码。
Criterion的.exit_code指令
Criterion框架提供了一个名为.exit_code
的测试指令,专门用于声明测试用例的预期退出码。默认情况下,Criterion期望测试用例正常执行完毕(退出码为0),如果测试用例以非零码退出,则会被标记为失败。
当我们需要测试一个应该以特定非零码退出的函数时,可以使用.exit_code
指令明确声明预期的退出码。这样,当测试用例确实以该码退出时,Criterion会认为测试通过而非失败。
实际应用示例
假设我们有一个函数foo()
,其行为如下:
void foo(int a) {
if(a == 1) exit(1);
if(a == 2) exit(2);
return;
}
要为这个函数编写退出码测试,可以这样实现:
#include <criterion/criterion.h>
#include <stdlib.h>
Test(exit_code, test_exit_1, .exit_code = 1) {
foo(1); // 预期会以退出码1退出
}
Test(exit_code, test_exit_2, .exit_code = 2) {
foo(2); // 预期会以退出码2退出
}
使用注意事项
-
默认行为:如果不指定
.exit_code
指令,Criterion默认期望测试用例正常完成(退出码为0)。 -
零退出码:虽然可以显式指定
.exit_code = 0
,但这通常没有必要,因为这是默认行为。 -
测试设计:每个测试用例应该只测试一种退出情况,保持测试的单一职责原则。
-
错误处理:确保测试用例中除了预期的退出语句外,没有其他可能导致退出的代码路径。
高级应用场景
在实际项目中,可能需要测试更复杂的退出行为:
-
多条件退出:测试函数在不同输入条件下的各种退出码。
-
异常退出:结合信号处理和退出码的测试。
-
资源清理:验证程序在退出前是否正确释放了分配的资源。
总结
Criterion框架的.exit_code
指令为测试程序的退出行为提供了简单而强大的支持。通过合理使用这一功能,开发者可以确保程序在各种条件下都能按照预期的方式终止,并返回正确的状态码。这种方法特别适合测试命令行工具和系统服务等需要明确退出状态的应用程序。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0308- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









