LMDeploy分布式推理中RDMA QP创建失败问题解析
2025-06-03 06:09:27作者:舒璇辛Bertina
问题背景
在使用LMDeploy进行分布式推理服务部署时,用户尝试按照官方文档的指导,在PD(Prefill-Decode)解耦模式下启动路由服务、预填充工作节点和解码工作节点。虽然服务能够正常启动,但在实际发送推理请求时,预填充工作节点崩溃,并出现"Failed to create QP"的错误信息。
环境配置
该问题出现在配备以下硬件的环境中:
- 2个eRDMA网络接口卡
- 8块NVIDIA A10 GPU
- 相关驱动包括nvidia_uvm、nvidia_peermem、ib_core等内核模块
软件环境使用Qwen2.5-7B-Instruct模型,通过LMDeploy的分布式服务模式进行部署。
错误现象分析
当用户通过curl发送POST请求时,系统表现出以下异常行为:
-
预填充工作节点:
- 首先正常接收并处理了HTTP请求
- 随后在尝试建立RDMA连接时失败,错误信息显示"Failed to create QP"
- 最终导致段错误(Segmentation fault)并崩溃
-
路由服务:
- 初始请求返回422状态码
- 尝试重连预填充工作节点多次失败
- 最终返回500内部服务器错误
-
系统层面:
- 在进程崩溃后,nvidia-smi命令也出现异常
技术原理分析
QP(Queue Pair)是RDMA(远程直接内存访问)技术中的核心概念,用于在节点间建立直接内存访问通道。在分布式推理场景中,预填充节点和解码节点需要通过RDMA进行高效的数据交换。
错误信息表明系统在创建QP时失败,这通常与以下因素有关:
- RDMA设备资源限制
- 队列对参数配置不当
- 设备驱动或固件问题
- 网络配置限制
解决方案
经过深入分析,发现问题根源在于eRDMA云服务器环境下,默认的max_send_sge和max_recv_sge参数值(4)与硬件不兼容。通过以下修改解决了问题:
在dlslime的rdma_context实现中,将max_send_sge和max_recv_sge参数从4调整为1。这是因为:
- eRDMA云服务器通常对单次操作的SGE(Scatter-Gather Element)数量有更严格的限制
- 减少SGE数量可以降低内存注册和DMA操作的开销
- 在大多数推理场景中,单SGE已能满足数据传输需求
经验总结
在分布式AI推理系统部署时,特别是使用RDMA技术时,需要注意:
- 不同RDMA硬件实现(如Mellanox、eRDMA等)可能有不同的参数限制
- 云环境下的虚拟化RDMA设备往往比物理设备有更多限制
- 系统参数需要根据实际硬件环境进行调整
- 错误日志中的"Failed to create QP"通常是RDMA资源分配问题的表现
这个问题展示了在分布式AI系统部署中,底层网络配置对系统稳定性的重要影响,也提醒开发者在不同环境中需要灵活调整系统参数。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
332
395
暂无简介
Dart
766
189
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
878
586
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
165
React Native鸿蒙化仓库
JavaScript
302
352
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
748
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
985
246