lm-evaluation-harness项目中目标分隔符对评估结果的影响分析
2025-05-26 09:48:18作者:羿妍玫Ivan
在大型语言模型评估过程中,目标分隔符(target_delimiter)的设置对评估结果会产生显著影响。本文基于lm-evaluation-harness项目中的实际案例,深入分析这一技术细节及其对模型性能评估的影响。
问题背景
在语言模型评估框架中,目标分隔符用于分隔提示文本和目标答案。默认情况下,lm-evaluation-harness项目使用空格作为分隔符(target_delimiter=" ")。这种设计对于基础模型来说是合理的,但当评估使用聊天模板的模型时,这种默认设置可能导致意外结果。
问题表现
在mmlu_pro评估任务中,研究人员发现了一个微妙但重要的差异:在few-shot示例中,模型答案直接紧接在分隔符后(如"A"),而实际评估问题时,答案前却意外地多了一个空格字符(如" I")。这种差异源于评估框架默认添加的空格分隔符。
影响分析
这种看似微小的差异对评估结果产生了显著影响。测试数据显示:
- 当使用空格作为分隔符时,70B参数模型的性能表现异常,几乎与8B模型相当
- 移除空格分隔符后,评估结果与HuggingFace Leaderboard的分数完全匹配
- 性能差异表明,空格字符可能干扰了模型对选项标记的理解和处理
技术原理
这种现象的根本原因与tokenizer的工作机制有关:
- 在few-shot示例中,答案作为长文本序列的一部分被tokenize
- 在实际评估时,答案作为独立字符被tokenize
- 某些tokenizer(如HuggingFace的tokenizer)具有"add_prefix_space"特性
- 空格的存在可能导致选项字母被tokenize为不同的token ID
解决方案
针对这一问题,项目组采取了以下改进措施:
- 对于使用聊天模板的任务,将target_delimiter设置为空字符串
- 通过配置yaml文件明确指定分隔符行为
- 确保评估设置与实际应用场景一致
实践建议
基于这一案例,我们建议在模型评估时注意以下几点:
- 仔细检查tokenizer的特殊处理行为
- 对于聊天模型,考虑禁用默认的分隔符
- 进行评估前,验证输入输出的格式一致性
- 比较不同设置下的评估结果,确保结论的可靠性
这一案例展示了评估框架中微小细节可能对结果产生的重大影响,强调了评估设置严谨性的重要性。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K