Selenide 7.9.2版本发布:优化视频录制与性能提升
项目简介
Selenide是一个基于Selenium的轻量级测试框架,它简化了Web应用程序的自动化测试流程。Selenide提供了简洁的API和强大的内置功能,如自动等待、简洁的选择器和丰富的断言方法,使得编写稳定可靠的UI测试变得更加容易。
版本亮点
Selenide 7.9.2版本带来了一系列改进和修复,主要集中在视频录制功能的优化和性能提升方面。
视频录制功能增强
-
视频颜色修复:修复了视频录制器中存在的颜色显示问题,确保录制视频的色彩准确无误。
-
智能录制机制:现在视频录制只在测试完成后才开始生成,这一改进显著减少了CPU资源的消耗。在之前的版本中,录制过程可能会持续整个测试周期,造成不必要的资源浪费。
-
附件格式标准化:视频录制文件现在采用"[[ATTACHMENT|FILE]]"的统一格式进行附加,这使得测试报告中的视频附件更加规范,便于管理和查看。
性能优化
-
列表大小缓存:通过缓存循环中的列表大小,显著提升了性能。这一优化特别适用于处理大型元素集合的场景,减少了重复计算的开销。
-
内存泄漏修复:将LittleProxy从2.4.1升级到2.4.2版本,解决了之前版本中存在的内存泄漏问题,提高了长时间运行的稳定性。
兼容性改进
-
Appium兼容性修复:解决了在selenide-appium中调用scroll(ScrollOptions)方法时可能出现的ClassCastException异常,提升了在移动设备测试中的稳定性。
-
依赖项升级:将Selenium从4.31.0升级到4.32.0,同时将CDP(Chrome DevTools Protocol)从135升级到136版本,确保与最新浏览器版本的兼容性。
技术细节分析
视频录制优化背后的技术
视频录制功能的改进体现了Selenide团队对测试效率的关注。通过延迟视频生成时机,只在测试完成后处理视频,不仅减少了CPU使用率,还避免了录制过程中可能出现的性能波动影响测试结果。这种"懒加载"思想在测试工具设计中值得借鉴。
性能优化的实现原理
列表大小缓存的优化看似简单,实则体现了对Java集合操作的深入理解。在遍历大型集合时,每次调用size()方法都可能带来额外的开销。通过缓存大小值,特别是在多次遍历同一集合的场景下,可以显著减少方法调用次数,提升整体性能。
内存泄漏问题的解决
LittleProxy作为Selenide的代理组件,其内存泄漏问题的修复对于长时间运行的测试套件尤为重要。这类问题的解决通常需要深入的内存分析工具和细致的代码审查,体现了项目维护者对稳定性的重视。
实际应用建议
对于使用Selenide进行自动化测试的团队,7.9.2版本值得升级,特别是:
-
频繁使用视频录制功能的团队将受益于CPU使用率的降低和颜色显示的改善。
-
处理大量页面元素的测试场景会因列表遍历优化而获得性能提升。
-
长时间运行的CI/CD流水线将因内存泄漏修复而更加稳定。
升级时需要注意Selenium和CDP版本的变更,确保与现有测试环境的兼容性。对于移动端测试团队,Appium兼容性问题的修复也解决了之前可能遇到的滚动操作异常。
总结
Selenide 7.9.2版本虽然是一个小版本更新,但在视频录制、性能优化和稳定性方面都做出了有价值的改进。这些变化体现了项目团队对用户体验和测试效率的持续关注,使得Selenide作为一个轻量级测试框架在功能和性能上都能满足现代Web应用测试的需求。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00