【亲测免费】 CLIP-ReID 项目使用教程
2026-01-22 04:22:56作者:毕习沙Eudora
1. 项目介绍
CLIP-ReID 是一个利用视觉-语言模型进行图像重识别(Image Re-identification)的开源项目。该项目的主要创新点在于不需要具体的文本标签,而是通过视觉-语言模型来实现图像的重识别。CLIP-ReID 在 AAAI 2023 上发表,并提供了官方实现代码。
项目的主要功能包括:
- 利用视觉-语言模型进行图像重识别。
- 支持多种数据集,如 Market-1501, MSMT17, DukeMTMC-reID 等。
- 提供了基于 CNN 和 ViT 的模型实现。
2. 项目快速启动
环境准备
首先,确保你已经安装了 Anaconda 或 Miniconda。然后创建并激活一个新的虚拟环境:
conda create -n clipreid python=3.8
conda activate clipreid
接下来,安装所需的依赖包:
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=10.2 -c pytorch
pip install yacs
pip install timm
pip install scikit-image
pip install tqdm
pip install ftfy
pip install regex
数据准备
下载所需的数据集(如 Market-1501, MSMT17 等),并将其解压到 your_dataset_dir 目录下。
训练模型
以 Market-1501 数据集为例,训练基于 CNN 的 CLIP-ReID 模型:
CUDA_VISIBLE_DEVICES=0 python train.py --config_file configs/person/cnn_base.yml
如果你想训练基于 ViT 的 CLIP-ReID 模型,可以修改配置文件并运行:
CUDA_VISIBLE_DEVICES=0 python train_clipreid.py --config_file configs/person/vit_clipreid.yml
模型评估
评估训练好的模型:
CUDA_VISIBLE_DEVICES=0 python test_clipreid.py --config_file configs/person/vit_clipreid.yml --weight your_trained_checkpoints_path/ViT-B-16_60.pth
3. 应用案例和最佳实践
应用案例
CLIP-ReID 可以应用于多个场景,如:
- 安防监控:在监控视频中识别特定的人员或车辆。
- 零售分析:在商场中识别顾客并进行行为分析。
- 自动驾驶:在自动驾驶系统中识别和跟踪其他车辆。
最佳实践
- 数据预处理:确保数据集的图像质量高,且标注准确。
- 模型选择:根据具体任务选择合适的模型(如 CNN 或 ViT)。
- 超参数调优:通过调整学习率、批量大小等超参数来优化模型性能。
4. 典型生态项目
- TransReID:一个基于 Transformer 的图像重识别项目,与 CLIP-ReID 有相似的应用场景。
- CoOp:一个用于图像分类的上下文优化项目,可以与 CLIP-ReID 结合使用,提升模型的泛化能力。
- VehicleReIDKeyPointData:一个用于车辆重识别的数据集,可以与 CLIP-ReID 结合使用,提升车辆识别的准确性。
通过以上步骤,你可以快速上手并使用 CLIP-ReID 项目进行图像重识别任务。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248