LMDeploy项目中Qwen2.5-7B模型Winogrande评测问题分析
在LMDeploy项目中使用Qwen2.5-7B模型进行Winogrande数据集评测时,开发人员遇到了一个典型的技术问题。这个问题涉及到模型推理、日志似然计算以及数据类型处理等多个技术环节。
问题的核心表现是,在使用lmdeploy后端和opencompass评测框架对Qwen2.5-7B模型进行Winogrande数据集评测时,系统抛出了类型错误:"TypeError: unsupported operand type(s) for -: 'list' and 'list'"。这个错误发生在计算对数似然的过程中,具体是在执行logit_sum和logit_part两个列表相减的操作时。
从技术实现层面来看,这个问题源于opencompass框架中turbomind.py文件的get_loglikelihood方法。该方法在处理模型输出时,预期接收的是数值类型的数据,但实际却得到了列表类型的数据。这种类型不匹配导致了运算失败。
深入分析这个问题,我们可以理解到几个关键点:
- 评测流程中,模型需要计算两个选项的对数似然值来比较哪个选项更可能正确
- 当前实现中,模型返回的对数似然值被错误地封装成了列表形式
- 框架期望直接处理数值类型的数据进行减法运算
这个问题实际上反映了深度学习模型评测中的一个常见挑战:模型输出格式与评测框架预期格式的一致性。在复杂的评测流程中,数据类型的转换和传递需要特别小心。
从解决方案来看,这个问题已经在opencompass项目的后续版本中得到修复。修复的核心思路是确保模型返回的对数似然值是直接的数值类型,而不是列表形式。这种修复保持了评测逻辑的简洁性,同时也确保了类型安全。
对于使用LMDeploy和opencompass进行模型评测的开发者来说,这个案例提供了几个有价值的经验:
- 在集成不同组件时,要特别注意接口数据类型的匹配
- 对数似然计算这类核心评测逻辑需要严格的类型检查
- 当遇到类似类型错误时,可以检查模型输出和框架预期的数据结构是否一致
这个问题虽然看似简单,但它揭示了深度学习评测系统中一个重要的设计考量:如何在保持灵活性的同时确保类型安全。这也是为什么现代深度学习框架都越来越重视类型系统和接口规范的原因。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00