使用LLM和蒙特卡洛树搜索验证代码的创新实践
2024-06-07 06:19:37作者:吴年前Myrtle
项目介绍
在编程世界中,保证代码的正确性与可靠性至关重要。为此,我们引荐一个开源项目——LLM verified with Monte Carlo Tree Search,它将大型语言模型(LLMs)与蒙特卡洛树搜索(MCTS)相结合,用于生成并验证代码。该原型支持Dafny、Coq、Lean、Scala或Rust等编程语言,通过MCTS探索可能的程序生成空间,并在每个步骤中利用验证器检查进度。
项目技术分析
这个项目的核心在于巧妙地结合了两种强大的技术:
- 大型语言模型(LLMs):它们被用来生成潜在的程序代码片段。
- 蒙特卡洛树搜索(MCTS):这是一种优化策略,用于在大量的可能性中寻找最佳解。在每一步中,系统都会尝试不同的代码路径,并基于验证结果进行决策。
项目采用GPU运行,已在多GPU系统上测试,如配备两块NVIDIA A100的机器。为了使用,你需要安装必要的环境和工具,包括Hugging Face的认证令牌、特定编程语言的验证器,以及Python和相关依赖包。
项目及技术应用场景
这个创新工具适用于需要保证代码正确性的各种场景,如:
- 安全关键领域的软件开发,如航空、医疗或金融服务。
- 自动化代码修复和优化,确保更改不会引入新的错误。
- 教育领域,为学生提供自动化辅助编写和验证代码的平台。
此外,由于它可以使用较弱的LLM模型,并通过MCTS获得与较强模型竞争的结果,因此对于资源有限或性能受限的环境特别有用。
项目特点
- 高效验证:即使模型对生成的语言了解不足,也能通过MCTS实现有效验证。
- 多语言支持:涵盖多种编程语言,满足不同开发者的需求。
- 用户交互:提供了与用户交互的模式,允许用户参与代码生成过程。
- 智能反馈:系统能够根据验证器的反馈调整代码生成策略。
- 训练功能:支持PPO和DPO训练算法来改进模型。
如果你对自动化代码验证和合成感兴趣,或者正在寻找一种增强代码质量的新方法,那么这个项目无疑是值得尝试的。通过实验,你可以观察到它的潜力,甚至可以将其应用于你的下一个项目,提高代码的可靠性和效率。别忘了,当你在享受这个开源项目带来的便利时,请记得引用相关的学术论文!
[@misc{brandfonbrener2024verified,
title={Verified Multi-Step Synthesis using Large Language Models and Monte Carlo Tree Search},
author={David Brandfonbrener and Sibi Raja and Tarun Prasad and Chloe Loughridge and Jianang Yang and Simon Henniger and William E. Byrd and Robert Zinkov and Nada Amin},
year={2024},
eprint={2402.08147},
archivePrefix={arXiv},
primaryClass={cs.SE}
}]
现在就开始探索LLM verified with Monte Carlo Tree Search,让代码验证和生成进入一个全新的境界吧!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
528
3.73 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
172
Ascend Extension for PyTorch
Python
338
401
React Native鸿蒙化仓库
JavaScript
302
353
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
884
590
暂无简介
Dart
769
191
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
139
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
246