使用LLM和蒙特卡洛树搜索验证代码的创新实践
2024-06-07 06:19:37作者:吴年前Myrtle
项目介绍
在编程世界中,保证代码的正确性与可靠性至关重要。为此,我们引荐一个开源项目——LLM verified with Monte Carlo Tree Search,它将大型语言模型(LLMs)与蒙特卡洛树搜索(MCTS)相结合,用于生成并验证代码。该原型支持Dafny、Coq、Lean、Scala或Rust等编程语言,通过MCTS探索可能的程序生成空间,并在每个步骤中利用验证器检查进度。
项目技术分析
这个项目的核心在于巧妙地结合了两种强大的技术:
- 大型语言模型(LLMs):它们被用来生成潜在的程序代码片段。
- 蒙特卡洛树搜索(MCTS):这是一种优化策略,用于在大量的可能性中寻找最佳解。在每一步中,系统都会尝试不同的代码路径,并基于验证结果进行决策。
项目采用GPU运行,已在多GPU系统上测试,如配备两块NVIDIA A100的机器。为了使用,你需要安装必要的环境和工具,包括Hugging Face的认证令牌、特定编程语言的验证器,以及Python和相关依赖包。
项目及技术应用场景
这个创新工具适用于需要保证代码正确性的各种场景,如:
- 安全关键领域的软件开发,如航空、医疗或金融服务。
- 自动化代码修复和优化,确保更改不会引入新的错误。
- 教育领域,为学生提供自动化辅助编写和验证代码的平台。
此外,由于它可以使用较弱的LLM模型,并通过MCTS获得与较强模型竞争的结果,因此对于资源有限或性能受限的环境特别有用。
项目特点
- 高效验证:即使模型对生成的语言了解不足,也能通过MCTS实现有效验证。
- 多语言支持:涵盖多种编程语言,满足不同开发者的需求。
- 用户交互:提供了与用户交互的模式,允许用户参与代码生成过程。
- 智能反馈:系统能够根据验证器的反馈调整代码生成策略。
- 训练功能:支持PPO和DPO训练算法来改进模型。
如果你对自动化代码验证和合成感兴趣,或者正在寻找一种增强代码质量的新方法,那么这个项目无疑是值得尝试的。通过实验,你可以观察到它的潜力,甚至可以将其应用于你的下一个项目,提高代码的可靠性和效率。别忘了,当你在享受这个开源项目带来的便利时,请记得引用相关的学术论文!
[@misc{brandfonbrener2024verified,
title={Verified Multi-Step Synthesis using Large Language Models and Monte Carlo Tree Search},
author={David Brandfonbrener and Sibi Raja and Tarun Prasad and Chloe Loughridge and Jianang Yang and Simon Henniger and William E. Byrd and Robert Zinkov and Nada Amin},
year={2024},
eprint={2402.08147},
archivePrefix={arXiv},
primaryClass={cs.SE}
}]
现在就开始探索LLM verified with Monte Carlo Tree Search,让代码验证和生成进入一个全新的境界吧!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
413
3.17 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
685
324
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
678
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
343
146