TensorFlow Extended (TFX) 开源项目教程
2024-08-07 13:31:16作者:江焘钦
项目介绍
TensorFlow Extended (TFX) 是一个基于 TensorFlow 的端到端平台,用于部署生产级机器学习管道。TFX 提供了一个配置框架,用于表达由 TFX 组件组成的 ML 管道。这些管道可以使用 Apache Airflow 和 Kubeflow Pipelines 进行编排。TFX 组件与一个 ML 元数据后端交互,该后端记录组件运行、输入和输出工件以及运行时配置。这个元数据后端支持高级功能,如实验跟踪或从先前运行中预热/恢复 ML 模型。
项目快速启动
安装 TFX
首先,确保你已经安装了 Python 和 pip。然后,使用以下命令安装 TFX:
pip install tfx
创建一个简单的 TFX 管道
以下是一个简单的 TFX 管道示例,包含数据导入、训练和模型评估步骤:
import os
from tfx import v1 as tfx
# 定义管道组件
example_gen = tfx.components.CsvExampleGen(input_base='data')
statistics_gen = tfx.components.StatisticsGen(examples=example_gen.outputs['examples'])
schema_gen = tfx.components.SchemaGen(statistics=statistics_gen.outputs['statistics'])
example_validator = tfx.components.ExampleValidator(statistics=statistics_gen.outputs['statistics'], schema=schema_gen.outputs['schema'])
transform = tfx.components.Transform(examples=example_gen.outputs['examples'], schema=schema_gen.outputs['schema'], module_file='preprocessing.py')
trainer = tfx.components.Trainer(module_file='model.py', examples=transform.outputs['transformed_examples'], schema=schema_gen.outputs['schema'], transform_graph=transform.outputs['transform_graph'])
evaluator = tfx.components.Evaluator(examples=example_gen.outputs['examples'], model=trainer.outputs['model'], feature_slicing_spec=tfx.proto.FeatureSlicingSpec(specs=[tfx.proto.SingleSlicingSpec(column_for_slicing=['trip_start_hour'])]))
# 创建管道
pipeline = tfx.dsl.Pipeline(
pipeline_name='my_pipeline',
pipeline_root='pipelines',
components=[example_gen, statistics_gen, schema_gen, example_validator, transform, trainer, evaluator],
enable_cache=True,
metadata_connection_config=tfx.orchestration.metadata.sqlite_metadata_connection_config('metadata.db')
)
# 运行管道
tfx.orchestration.LocalDagRunner().run(pipeline)
应用案例和最佳实践
应用案例
TFX 广泛应用于各种场景,包括但不限于:
- 金融风控:通过历史数据训练模型,预测信用风险。
- 医疗诊断:利用医学影像和患者数据,辅助医生进行疾病诊断。
- 推荐系统:根据用户行为和偏好,提供个性化推荐。
最佳实践
- 数据质量:确保数据质量是 ML 项目成功的关键。使用 TFX 的
StatisticsGen和ExampleValidator组件来检查数据质量。 - 模块化设计:将数据处理、模型训练和评估步骤模块化,便于维护和扩展。
- 持续集成和部署:使用 TFX 与 CI/CD 工具集成,实现模型的自动测试和部署。
典型生态项目
TFX 与其他 TensorFlow 生态项目紧密集成,包括:
- TensorFlow Lite:用于在移动和嵌入式设备上进行推理。
- TensorFlow.js:允许在浏览器中运行 TensorFlow 模型。
- TensorBoard:用于可视化训练过程和模型性能。
- Kubeflow Pipelines:用于在 Kubernetes 上编排 ML 管道。
这些生态项目与 TFX 结合使用,可以构建一个完整的端到端 ML 生产环境。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
303
2.67 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
133
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
629
222
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
459
暂无简介
Dart
594
129
React Native鸿蒙化仓库
JavaScript
231
307
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
613
仓颉编译器源码及 cjdb 调试工具。
C++
123
605
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
360
2.55 K