Elevenlabs Python SDK 中语音转文字PDF导出功能的使用技巧
在语音处理领域,将音频转换为文字是一项常见需求。Elevenlabs Python SDK 提供了强大的语音转文字功能,但在实际使用过程中,开发者可能会遇到一些技术难点。本文将重点介绍如何正确使用该SDK导出PDF格式的转录文本。
问题背景
当开发者尝试使用Elevenlabs Python SDK的speech_to_text.convert方法时,可能会遇到导出PDF格式的问题。常见的错误包括类型不匹配和编码问题,这主要是因为SDK对参数格式有特定要求。
正确使用方法
要成功导出PDF格式的转录文本,需要注意以下几个关键点:
-
参数格式要求:
additional_formats参数需要接收JSON序列化后的字符串,而不是直接传入字典对象。 -
PDF选项配置:PDF导出支持多种配置选项,包括是否包含说话人信息和时间戳等。
-
返回数据处理:返回的PDF内容是Base64编码的,需要解码后才能正常使用。
完整示例代码
以下是正确使用PDF导出功能的完整代码示例:
from io import BytesIO
import requests
import json
import base64
from elevenlabs.client import ElevenLabs
# 初始化客户端
client = ElevenLabs(api_key="your_api_key")
# 获取音频数据
audio_url = "https://example.com/audio.mp3"
response = requests.get(audio_url)
audio_data = BytesIO(response.content)
# 配置PDF导出选项
pdf_options = {
"format": "pdf",
"include_speakers": True, # 包含说话人信息
"include_timestamps": True # 包含时间戳
}
# 执行语音转文字转换
transcription = client.speech_to_text.convert(
model_id="scribe_v1",
file=audio_data,
diarize=True, # 启用说话人分离
timestamps_granularity="word", # 时间戳粒度
additional_formats=json.dumps([pdf_options]) # 注意需要JSON序列化
)
# 处理返回的PDF数据
pdf_content = transcription.additional_formats[0].content
pdf_data = base64.b64decode(pdf_content) # Base64解码
# 保存PDF文件
with open("transcription.pdf", "wb") as pdf_file:
pdf_file.write(pdf_data)
常见问题解决方案
-
类型错误:如果遇到"Invalid type for value"错误,请确保
additional_formats参数是经过JSON序列化的字符串。 -
编码问题:返回的PDF内容是Base64编码的,即使
is_base64_encoded标志显示为False,也需要进行解码处理。 -
配置选项:根据需求调整PDF导出选项,如是否需要包含说话人信息或时间戳等。
最佳实践建议
-
在使用SDK前,仔细阅读官方文档,了解各参数的格式要求。
-
对于返回的数据,即使标志显示为非Base64编码,也建议先尝试Base64解码。
-
在生产环境中,添加适当的错误处理机制,特别是网络请求和文件操作部分。
通过掌握这些技巧,开发者可以更高效地使用Elevenlabs Python SDK的语音转文字功能,并成功导出PDF格式的转录结果。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00