Langchain-ChatGLM项目中"An error occurred during streaming"问题分析与解决方案
问题概述
在使用Langchain-ChatGLM项目进行本地知识库问答时,许多开发者遇到了"An error occurred during streaming"的错误提示。这个问题主要出现在使用ChatGLM3-6B等本地模型进行问答交互时,系统无法正常返回结果,而是抛出流式处理错误。
错误现象分析
从错误日志中可以观察到几个关键点:
-
核心错误信息显示"GenerationMixin._get_logits_warper() missing 1 required positional argument: 'device'",这表明模型生成过程中缺少必要的设备参数。
-
日志中还出现了关于max_new_tokens和max_length参数冲突的警告,虽然这不是直接导致错误的原因,但反映了模型配置可能存在问题。
-
错误发生在transformers库的stream_chat和stream_generate方法中,说明问题与模型的流式生成功能相关。
根本原因
经过深入分析,这个问题主要由以下几个因素导致:
-
transformers版本兼容性问题:某些版本的transformers库与ChatGLM3模型存在兼容性问题,特别是4.42.x版本。
-
模型实现差异:ChatGLM3模型在流式生成时对设备参数的处理方式与其他模型不同。
-
Xinference框架限制:使用Xinference加载本地模型时,某些配置可能导致参数传递不完整。
解决方案
针对这个问题,开发者可以尝试以下几种解决方案:
方案一:调整transformers版本
将transformers库降级到4.41.2版本:
pip install transformers==4.41.2
或者升级到4.48.0版本:
pip install transformers==4.48.0
方案二:更换模型引擎
使用vllm引擎替代默认引擎加载模型:
xinference launch --model-engine vllm --model-name qwen-chat --size-in-billions 7 --model-format pytorch --quantization none
方案三:使用兼容性更好的模型
考虑使用Qwen系列模型替代ChatGLM3:
xinference launch --model-name qwen-chat --size-in-billions 7
方案四:调整HTTPX版本
对于网络通信相关的问题,可以尝试:
pip install httpx==0.27.2
最佳实践建议
-
环境隔离:建议使用conda或venv创建独立Python环境,避免包版本冲突。
-
日志调试:在basic_settings.yaml中设置log_verbose: true获取更详细的错误信息。
-
逐步验证:先确保基础模型能正常运行,再接入Langchain-ChatGLM的完整功能。
-
资源监控:确保系统有足够的内存和显存资源运行所选模型。
技术原理深入
这个问题本质上反映了深度学习模型服务化过程中的几个挑战:
-
版本兼容性:不同版本的模型实现可能依赖特定版本的框架功能。
-
流式生成:大语言模型的流式输出需要正确处理生成参数和设备上下文。
-
服务封装:Xinference等推理服务框架需要准确传递所有必要参数。
理解这些底层原理有助于开发者更好地诊断和解决类似问题。
总结
"An error occurred during streaming"是Langchain-ChatGLM项目中常见的兼容性问题,通过调整环境配置、更换模型或框架版本通常可以解决。开发者应当根据自身硬件条件和需求选择合适的解决方案,并建立规范的环境管理流程以避免类似问题。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00