AgentScope多智能体消息交互模式详解
2025-05-30 06:03:35作者:冯爽妲Honey
在分布式智能体系统开发中,多智能体间的消息交互是核心功能之一。本文将以开源项目AgentScope为例,深入解析其多智能体通信机制,特别是针对"一对多"和"多对一"这两种典型消息传递场景的实现方案。
基础消息模型
AgentScope采用基于消息的通信范式,每个智能体(DialogAgent)都具备独立的身份标识(name)和系统提示(sys_prompt)。基础的消息发送通过直接调用智能体实例并传入消息对象(Msg)实现,消息内容支持字符串或结构化数据。
多接收者消息传递
当需要实现单个智能体同时向多个接收者发送消息时,可以通过并行调用多个智能体的方式实现。典型场景如协调者向多个工作者分发任务:
# 初始化协调者和工作者
coordinator = DialogAgent(name="Coordinator", ...)
worker1 = DialogAgent(name="Worker1", ...)
worker2 = DialogAgent(name="Worker2", ...)
# 广播任务消息
task_msg = Msg("system", "开始处理新批次数据", "coordinator")
response1 = worker1(task_msg) # 工作者1接收
response2 = worker2(task_msg) # 工作者2接收
多发送者聚合处理
对于需要聚合多个来源消息的场景,如投票决策或数据汇总,可以将多个消息对象组合后传递给目标智能体:
# 初始化决策者和参与者
decider = DialogAgent(name="Decider", ...)
participant_a = DialogAgent(name="A", ...)
participant_b = DialogAgent(name="B", ...)
# 收集各方意见
opinion_a = participant_a(Msg("user", "建议方案A", "a"))
opinion_b = participant_b(Msg("user", "支持方案B", "b"))
# 综合决策
final_decision = decider([opinion_a, opinion_b])
高级消息中心模式
对于更复杂的群组交互场景,AgentScope提供了消息中心(msghub)机制。该模式允许多个智能体加入同一个通信上下文,实现广播、选择性接收等高级功能:
- 创建消息中心并注册参与者
- 设置消息路由规则
- 智能体通过中心进行发布/订阅
- 支持消息过滤和转换
最佳实践建议
-
消息设计原则:
- 保持消息结构一致性
- 包含必要的元数据(sender, timestamp等)
- 合理控制消息体积
-
并发处理:
- 对IO密集型操作使用异步消息
- 考虑消息队列缓冲机制
-
错误处理:
- 实现消息重试机制
- 设计死信处理策略
-
性能优化:
- 批处理聚合消息
- 采用压缩传输大消息
通过合理运用这些模式,开发者可以在AgentScope框架下构建出高效、可靠的多智能体协作系统。实际应用中,建议根据具体业务场景选择最适合的消息交互架构,并在原型阶段充分测试各种边界条件。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
242
278
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
369
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882