Forgetting Transformer 开源项目教程
2025-05-17 21:10:12作者:邬祺芯Juliet
1. 项目介绍
Forgetting Transformer 是一个开源项目,旨在通过引入遗忘门(Forget Gate)来改进Transformer模型中的注意力机制。该模型是softmax注意力机制的一个扩展,通过遗忘门控制信息流的保留与遗忘,从而在处理序列数据时提高效率和性能。该项目的核心是Forgetting Attention机制,并提供了完整的PyTorch实现,包括训练和评估代码以及模型检查点。
2. 项目快速启动
环境准备
- Python 3.10 或更高版本
- pip(Python 包管理器)
安装步骤
如果你想使用Forgetting Attention核心或者FoX层/模型,可以按照以下步骤进行:
使用pip安装
如果你只是想使用Forgetting Attention核心,可以执行以下命令:
pip uninstall forgetting_transformer
pip install -U git+https://github.com/zhixuan-lin/forgetting-transformer.git
请注意记录你使用的提交哈希值。未来可能会引入破坏性的更改。
克隆仓库并安装
如果你想进行训练/评估或修改代码,需要克隆仓库并进行可编辑安装:
git clone git@github.com:zhixuan-lin/forgetting-transformer.git
cd forgetting-transformer
pip install --editable .
注意:以上安装方法默认不会安装任何依赖。所需的依赖取决于你的使用目的,将在下面进行说明。
使用Forgetting Attention核心
如果你只想使用Forgetting Attention核心(例如,作为FlashAttention核心的替代),你需要安装以下依赖:
pip install pytest einops numpy
pip install torch==2.4.0
使用示例
以下是一个简单的示例,展示了如何使用Forgetting Attention:
import torch
from forgetting_transformer import forgetting_attention
batch_size = 4
num_heads = 12
seq_len = 512
head_dim = 64
dtype = torch.bfloat16
device = "cuda"
q = torch.randn((batch_size, seq_len, num_heads, head_dim), dtype=dtype, device=device, requires_grad=True)
k = torch.randn((batch_size, seq_len, num_heads, head_dim), dtype=dtype, device=device, requires_grad=True)
v = torch.randn((batch_size, seq_len, num_heads, head_dim), dtype=dtype, device=device, requires_grad=True)
fgate_logit = torch.randn((batch_size, seq_len, num_heads), dtype=dtype, device=device, requires_grad=True)
log_fgate = torch.nn.functional.logsigmoid(fgate_logit.float())
out = forgetting_attention(q, k, v, log_fgate)
assert out.size() == (batch_size, seq_len, num_heads, head_dim)
out.sum().backward()
3. 应用案例和最佳实践
Forgetting Transformer 可用于各种序列数据处理任务,如自然语言处理(NLP)中的文本分类、机器翻译等。以下是一些应用案例和最佳实践:
- 文本分类:在文本分类任务中,Forgetting Transformer 可以帮助模型更好地理解文本上下文,提高分类的准确性。
- 机器翻译:在机器翻译中,Forgetting Transformer 通过控制遗忘门,可以减少错误翻译的发生,提高翻译质量。
最佳实践包括:
- 使用适当的数据预处理和后处理步骤。
- 根据任务需求调整模型的超参数,如头数、序列长度、头维度等。
- 在训练初期使用较小的学习率,随着训练的进行逐渐增大。
4. 典型生态项目
Forgetting Transformer 可以与以下生态项目结合使用,以发挥更大的效益:
- Transformers:Hugging Face 的 Transformers 库提供了大量的预训练模型和工具,可以与Forgetting Transformer 结合,用于各种NLP任务。
- PyTorch:作为深度学习框架,PyTorch 与Forgetting Transformer 的结合可以为研究人员提供灵活性和效率。
通过以上的教程,你将能够快速上手并使用Forgetting Transformer 进行各种序列数据处理任务。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
137