Forgetting Transformer 开源项目教程
2025-05-17 02:33:21作者:邬祺芯Juliet
1. 项目介绍
Forgetting Transformer 是一个开源项目,旨在通过引入遗忘门(Forget Gate)来改进Transformer模型中的注意力机制。该模型是softmax注意力机制的一个扩展,通过遗忘门控制信息流的保留与遗忘,从而在处理序列数据时提高效率和性能。该项目的核心是Forgetting Attention机制,并提供了完整的PyTorch实现,包括训练和评估代码以及模型检查点。
2. 项目快速启动
环境准备
- Python 3.10 或更高版本
- pip(Python 包管理器)
安装步骤
如果你想使用Forgetting Attention核心或者FoX层/模型,可以按照以下步骤进行:
使用pip安装
如果你只是想使用Forgetting Attention核心,可以执行以下命令:
pip uninstall forgetting_transformer
pip install -U git+https://github.com/zhixuan-lin/forgetting-transformer.git
请注意记录你使用的提交哈希值。未来可能会引入破坏性的更改。
克隆仓库并安装
如果你想进行训练/评估或修改代码,需要克隆仓库并进行可编辑安装:
git clone git@github.com:zhixuan-lin/forgetting-transformer.git
cd forgetting-transformer
pip install --editable .
注意:以上安装方法默认不会安装任何依赖。所需的依赖取决于你的使用目的,将在下面进行说明。
使用Forgetting Attention核心
如果你只想使用Forgetting Attention核心(例如,作为FlashAttention核心的替代),你需要安装以下依赖:
pip install pytest einops numpy
pip install torch==2.4.0
使用示例
以下是一个简单的示例,展示了如何使用Forgetting Attention:
import torch
from forgetting_transformer import forgetting_attention
batch_size = 4
num_heads = 12
seq_len = 512
head_dim = 64
dtype = torch.bfloat16
device = "cuda"
q = torch.randn((batch_size, seq_len, num_heads, head_dim), dtype=dtype, device=device, requires_grad=True)
k = torch.randn((batch_size, seq_len, num_heads, head_dim), dtype=dtype, device=device, requires_grad=True)
v = torch.randn((batch_size, seq_len, num_heads, head_dim), dtype=dtype, device=device, requires_grad=True)
fgate_logit = torch.randn((batch_size, seq_len, num_heads), dtype=dtype, device=device, requires_grad=True)
log_fgate = torch.nn.functional.logsigmoid(fgate_logit.float())
out = forgetting_attention(q, k, v, log_fgate)
assert out.size() == (batch_size, seq_len, num_heads, head_dim)
out.sum().backward()
3. 应用案例和最佳实践
Forgetting Transformer 可用于各种序列数据处理任务,如自然语言处理(NLP)中的文本分类、机器翻译等。以下是一些应用案例和最佳实践:
- 文本分类:在文本分类任务中,Forgetting Transformer 可以帮助模型更好地理解文本上下文,提高分类的准确性。
- 机器翻译:在机器翻译中,Forgetting Transformer 通过控制遗忘门,可以减少错误翻译的发生,提高翻译质量。
最佳实践包括:
- 使用适当的数据预处理和后处理步骤。
- 根据任务需求调整模型的超参数,如头数、序列长度、头维度等。
- 在训练初期使用较小的学习率,随着训练的进行逐渐增大。
4. 典型生态项目
Forgetting Transformer 可以与以下生态项目结合使用,以发挥更大的效益:
- Transformers:Hugging Face 的 Transformers 库提供了大量的预训练模型和工具,可以与Forgetting Transformer 结合,用于各种NLP任务。
- PyTorch:作为深度学习框架,PyTorch 与Forgetting Transformer 的结合可以为研究人员提供灵活性和效率。
通过以上的教程,你将能够快速上手并使用Forgetting Transformer 进行各种序列数据处理任务。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C083
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
82
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1