在EleutherAI/lm-evaluation-harness中复现MMLU基准测试结果的技术指南
2025-05-26 17:09:24作者:邓越浪Henry
背景介绍
MMLU(Massive Multitask Language Understanding)是一个广泛使用的大规模多任务语言理解评估基准,它包含了57个不同学科领域的测试题目,从基础数学到专业医学知识都有涵盖。这个基准测试在评估大型语言模型(LLM)的综合能力方面发挥着重要作用。
数据集准备
在EleutherAI/lm-evaluation-harness项目中,MMLU数据集可以通过hails/mmlu_no_train获取。这个数据集版本特别之处在于它不包含训练集,只包含测试集,专门用于评估目的。这与原始MMLU数据集的结构有所不同,原始数据集通常包含开发集和测试集。
评估配置解析
根据LLM排行榜(old-version)的设置,MMLU评估采用5-shot测试方式,测试范围涵盖了hendrycksTest下的多个学科领域,包括但不限于:
- 抽象代数(abstract_algebra)
- 解剖学(anatomy)
- 天文学(astronomy)
- 商业伦理(business_ethics)
- 临床知识(clinical_knowledge)
项目版本差异
需要注意的是,不同版本的lm-evaluation-harness对MMLU的支持有所不同:
- v0.4.3版本:这是通过PyPI安装的稳定版本,但功能相对有限
- main分支:包含最新功能,如leaderboard_mmlu_pro任务配置,专门为复现排行榜结果设计
技术实现建议
对于想要复现LLM排行榜结果的开发者,建议采取以下步骤:
- 直接从main分支安装lm-evaluation-harness,而不是通过PyPI
- 使用leaderboard_mmlu_pro任务配置,这是专门为匹配排行榜设置而设计的
- 确保评估时采用5-shot设置,这与排行榜的评估标准一致
评估注意事项
在本地复现MMLU评估时,需要注意以下几点:
- 测试学科的选择应与排行榜保持一致
- few-shot示例的数量必须精确控制为5个
- 评估结果的统计方法需要与原始排行榜相同
- 不同版本的评估框架可能产生细微差异
通过遵循这些指南,开发者可以在本地环境中准确复现LLM排行榜上的MMLU评估结果,为模型性能提供可靠的基准比较。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.89 K
暂无简介
Dart
671
156
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
261
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
654
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1