CVAT项目中Ground Truth功能在标注标签中的应用实践
2025-05-16 00:48:46作者:薛曦旖Francesca
功能概述
CVAT(Computer Vision Annotation Tool)作为一款开源的计算机视觉标注工具,其Ground Truth功能主要用于对比人工标注与模型预测结果之间的差异。该功能通过可视化界面展示标注不一致的情况,帮助用户快速定位问题区域,提高模型训练数据的质量。
标签标注中的Ground Truth应用
在实际使用中发现,Ground Truth功能完全支持标签(tag)类型的标注,但用户需要注意以下几点:
-
数据刷新机制:系统可能存在一定的延迟,新生成的Ground Truth对比结果需要等待片刻或手动刷新页面才能显示完整。
-
冲突解决界面:当人工标注与模型预测存在差异时,系统会以醒目方式展示不一致的标签。用户可以通过专门的对比界面查看具体差异。
-
右键菜单冲突:在标签上使用右键功能时,可能会与浏览器默认右键菜单产生冲突。建议通过CVAT提供的专门界面进行操作,而非依赖上下文菜单。
自动化问题生成实践
通过CVAT的API接口,可以实现自动化的问题生成和注释添加:
# 创建问题记录
issue = models.Issue.objects.create(
job=initial_job,
frame=frame_number,
position=[0, 0],
owner=visionia_user,
)
# 添加详细注释
comment_message = (
f"Predicted: {predicted_label}\n"
f"Confidence: {confidence}"
)
models.Comment.objects.create(
issue=issue,
owner=visionia_user,
message=comment_message
)
这种方法特别适用于大规模数据集的质量检查,可以自动记录每个差异点的详细信息,包括预测标签和置信度等关键数据。
多任务管理建议
目前Ground Truth功能是基于单个任务设计的。对于跨多个任务的数据集,建议:
- 合并相关任务为一个统一任务后再生成Ground Truth
- 或者分别生成各任务的Ground Truth后,通过外部脚本汇总分析结果
- 考虑开发自定义插件实现跨任务的统一Ground Truth视图
最佳实践总结
- 对于标签类标注,建议先小规模测试Ground Truth功能,确认工作流程
- 自动化脚本可以显著提高大规模数据集的质量检查效率
- 注意系统可能存在的数据延迟问题,必要时手动刷新
- 多任务场景下需要制定统一的质量评估策略
通过合理利用CVAT的Ground Truth功能,可以系统性地提升标注数据质量,为后续模型训练提供更可靠的基础数据。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
328
387
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
136