Deeplab-v2-ResNet-101-TensorFlow 使用指南
2024-09-24 14:23:11作者:韦蓉瑛
本指南旨在帮助您快速了解并使用在TensorFlow中重新实现的Deeplab-v2(基于ResNet-101)进行语义图像分割的开源项目。
1. 目录结构及介绍
项目的主要目录结构如下:
- [main.py and main_msc.py] - 训练和多尺度训练的入口脚本。
- [model.py and model_msc.py] - 定义了模型架构,后者支持多尺度训练。
- [network.py] - 包含网络层定义,如卷积、批归一化等。
- [dataset] - 存放数据集处理相关文件,例如加载数据和预处理。
- cityscapes - 若使用Cityscapes数据集的相关处理文件。
- [utils] - 工具函数集合,涵盖图像读取、标签处理等功能。
- [LICENSE] - 项目使用的许可证信息,遵循GPL-3.0。
- [README.md] - 项目概述、安装步骤、使用说明等重要文档。
2. 项目的启动文件介绍
-
main.py: 这是基本的训练和验证脚本。通过配置文件设置,您可以开始在PASCAL VOC 2012数据集上的训练流程。它允许您指定模型的训练细节,如迭代次数、学习率策略、预训练权重等。
-
main_msc.py: 扩展功能版本,支持多尺度训练。这允许模型在不同尺寸的输入图像上训练,通常能提升分割精度。配置类似于
main.py,但引入了更多参数来控制多尺度训练的行为。
3. 项目的配置文件介绍
虽然本项目主要通过命令行参数进行配置,但核心配置逻辑体现在启动脚本(main.py, main_msc.py)内以及间接地,在如何调用这些脚本时指定的参数中。以下是几个关键配置项的简要说明:
-
网络配置
encoder_name: 预训练模型名称,如'res101', 支持原生ImageNet预训练或额外COCO预训练的ResNet变体。pretrain_file: 初始预训练模型的路径,用于迁移学习。
-
训练设置
num_steps: 总训练步数。save_interval: 模型保存的频率(按步数计算)。random_seed: 确保实验可复现性的随机种子。learning_rate: 初始学习率,通常采用poly学习率策略调整。
-
数据处理
data_dir: 数据存储的基本路径。batch_size: 训练批次大小。input_height,input_width: 输入图像的尺寸。data_list: 数据列表文件,指示哪些图像参与训练或验证。
-
测试与预测
test_step,test_num_steps: 测试或预测时模型检查点的选择和样本数量。
使用这些配置,结合提供的启动脚本,您就可以开始语义分割任务的训练、验证和预测过程了。确保在运行前已正确设置环境,包括安装必要的Python包(特别是TensorFlow 1.3.0及以上版本)及准备相应数据集。此外,了解TensorBoard的使用将有助于监控训练进程和可视化模型表现。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178