Olive项目中使用模型构建器时遇到的动态形状问题解析
问题背景
在Olive项目(微软开源的模型优化工具)中,用户尝试使用--use_model_builder参数进行自动优化时遇到了程序崩溃问题。这个问题特别出现在Windows系统下,当用户尝试对meta-llama/Llama-2-7b-chat-hf模型进行优化时发生。
错误现象分析
执行命令后,系统抛出了一个关键错误:AttributeError: 'Namespace' object has no attribute 'input_model'。这个错误表明在代码执行过程中,程序试图访问一个不存在的属性input_model,而实际上可能应该访问的是input_cols属性。
深入分析错误堆栈可以发现,问题发生在自动优化流程中获取运行配置的阶段。具体来说,当程序尝试构建passes配置时,错误地假设了命名空间对象中存在input_model属性,而实际上这个假设并不成立。
技术原理探究
这个问题涉及到Olive框架中几个关键概念:
-
模型构建器(Model Builder):这是Olive提供的一个功能,用于构建和优化模型的计算图。它可以帮助用户更方便地定义模型结构并进行各种优化。
-
动态形状处理:在深度学习模型中,特别是像Llama这样的大型语言模型,输入的形状(如batch size和sequence length)通常是动态的。这使得模型可以处理不同长度的输入序列。
-
执行提供者(Execution Provider):在ONNX Runtime中,执行提供者负责在特定硬件上执行模型。DmlExecutionProvider是针对DirectML硬件的执行提供者。
解决方案与修复
项目维护者已经通过PR #1455修复了这个问题。修复的核心内容包括:
-
修正了属性访问逻辑,确保程序能够正确识别输入模型的相关配置。
-
澄清了关于DmlExecutionProvider的一个误解:虽然某些情况下可能需要固定形状参数,但对于LLM模型来说,保持动态形状是更合适的选择,因为这样可以同时支持提示处理(prompt processing)和令牌生成(token generation)两种场景。
最佳实践建议
对于使用Olive进行模型优化的开发者,特别是处理大型语言模型时,建议:
-
确保使用最新版本的Olive,以避免已知问题。
-
对于动态形状模型,不需要强制指定固定形状参数,除非有特定需求。
-
当遇到类似属性错误时,可以检查命令参数是否正确传递,以及代码中属性访问是否符合预期。
-
对于Windows平台上的DirectML优化,了解DmlExecutionProvider的特性可以帮助更好地配置优化流程。
这个问题及其解决方案展示了开源社区如何协作解决技术难题,也提醒开发者在框架使用过程中需要注意API的兼容性和参数传递的正确性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C093
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00