首页
/ TorchMetrics v1.6.2版本发布:增强分割与分类评估能力

TorchMetrics v1.6.2版本发布:增强分割与分类评估能力

2025-06-20 18:23:00作者:伍希望

TorchMetrics是一个专注于机器学习模型评估的PyTorch库,它提供了各种评估指标的高效实现。作为PyTorch Lightning生态系统的重要组成部分,TorchMetrics帮助研究人员和工程师更轻松地跟踪模型性能。最新发布的v1.6.2版本带来了一系列功能增强和错误修复,特别是在图像分割和分类任务评估方面有显著改进。

新增功能亮点

分割任务评估增强

在图像分割领域,DiceScore指标新增了zero_division参数,用于处理预测结果与真实标签完全没有重叠的特殊情况。这一改进使得模型在完全错误预测时的评估更加灵活可控。

语音质量评估优化

DNSMOS语音质量评估指标新增了cache_session参数,允许用户控制缓存行为。这一改进对于需要频繁评估语音质量的场景特别有价值,用户可以根据实际需求选择是否缓存中间结果以提高效率。

基础聚合指标增强

基础聚合指标现在支持通过disable选项来关闭nan_strategy处理。这一改进为高级用户提供了更细粒度的控制能力,可以根据具体需求灵活处理缺失值。

重要功能改进

分类任务评估灵活性提升

在分类任务评估中,当使用micro平均策略时,num_classes参数现在变为可选。这一改变简化了使用流程,特别是在类别数量不确定或动态变化的场景下。

跨模态相似度计算

Clip_Score指标得到增强,现在能够计算相同模态之间的相似度。这一改进扩展了该指标的应用范围,使其不仅限于跨模态评估,还能用于单模态内容的相似性分析。

关键错误修复

分割评估边界情况处理

修复了DiceScore在预测与目标完全没有重叠时的计算问题,确保了评估结果的准确性。这一修复对于分割模型的全面评估至关重要。

分类评估指标修正

MeanAveragePrecision指标在使用micro平均策略且标签0不存在时的计算问题得到解决。同时,PearsonCorrCoef指标在输入为常数时的边界情况处理也得到了完善。

其他重要修复

MetricCollection.update方法的结果一致性问题、PIT指标的kwargs传递问题,以及PearsonCorrCoef的最终聚合函数中的多个错误都得到了修复。这些改进提升了整个库的稳定性和可靠性。

总结

TorchMetrics v1.6.2版本虽然是一个小版本更新,但带来了多项实用改进和关键修复。这些变化进一步增强了库在分割和分类任务评估中的能力,同时提高了整体稳定性和用户体验。对于依赖准确模型评估的研究人员和工程师来说,升级到这个版本将获得更可靠和灵活的评估工具。

登录后查看全文
热门项目推荐
相关项目推荐