TorchMetrics v1.6.2版本发布:增强分割与分类评估能力
TorchMetrics是一个专注于机器学习模型评估的PyTorch库,它提供了各种评估指标的高效实现。作为PyTorch Lightning生态系统的重要组成部分,TorchMetrics帮助研究人员和工程师更轻松地跟踪模型性能。最新发布的v1.6.2版本带来了一系列功能增强和错误修复,特别是在图像分割和分类任务评估方面有显著改进。
新增功能亮点
分割任务评估增强
在图像分割领域,DiceScore指标新增了zero_division参数,用于处理预测结果与真实标签完全没有重叠的特殊情况。这一改进使得模型在完全错误预测时的评估更加灵活可控。
语音质量评估优化
DNSMOS语音质量评估指标新增了cache_session参数,允许用户控制缓存行为。这一改进对于需要频繁评估语音质量的场景特别有价值,用户可以根据实际需求选择是否缓存中间结果以提高效率。
基础聚合指标增强
基础聚合指标现在支持通过disable选项来关闭nan_strategy处理。这一改进为高级用户提供了更细粒度的控制能力,可以根据具体需求灵活处理缺失值。
重要功能改进
分类任务评估灵活性提升
在分类任务评估中,当使用micro平均策略时,num_classes参数现在变为可选。这一改变简化了使用流程,特别是在类别数量不确定或动态变化的场景下。
跨模态相似度计算
Clip_Score指标得到增强,现在能够计算相同模态之间的相似度。这一改进扩展了该指标的应用范围,使其不仅限于跨模态评估,还能用于单模态内容的相似性分析。
关键错误修复
分割评估边界情况处理
修复了DiceScore在预测与目标完全没有重叠时的计算问题,确保了评估结果的准确性。这一修复对于分割模型的全面评估至关重要。
分类评估指标修正
MeanAveragePrecision指标在使用micro平均策略且标签0不存在时的计算问题得到解决。同时,PearsonCorrCoef指标在输入为常数时的边界情况处理也得到了完善。
其他重要修复
MetricCollection.update方法的结果一致性问题、PIT指标的kwargs传递问题,以及PearsonCorrCoef的最终聚合函数中的多个错误都得到了修复。这些改进提升了整个库的稳定性和可靠性。
总结
TorchMetrics v1.6.2版本虽然是一个小版本更新,但带来了多项实用改进和关键修复。这些变化进一步增强了库在分割和分类任务评估中的能力,同时提高了整体稳定性和用户体验。对于依赖准确模型评估的研究人员和工程师来说,升级到这个版本将获得更可靠和灵活的评估工具。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00