Redisson集群模式下新增从节点时的连接泄漏问题分析
问题背景
在使用Redisson连接Redis集群时,当向一个健康的Redis集群添加新的从节点(slave node)后,发现新从节点的连接数异常增高。经过对Redisson源码的分析,发现这是一个与并发控制相关的连接泄漏问题。
问题版本
该问题最初出现在Redisson 3.15.5版本,在3.16.4版本中进行了部分修复,但根据分析,问题并未完全解决。最新3.30.0版本中虽然进行了重构,但仍可能存在类似隐患。
问题本质
这是一个典型的并发控制问题,在集群拓扑结构发生变化时,多个线程可能同时检测到变化并尝试添加从节点,导致同一个从节点被多次添加,从而产生多余的连接。
代码演进分析
3.15.5版本的问题
在早期3.15.5版本中,addRemoveSlaves方法直接添加从节点,没有检查该节点是否已经被添加过。这导致一个节点可能被多次添加,每次添加都会创建新的连接池。
private CompletableFuture<Set<RedisURI>> addRemoveSlaves(...) {
// 直接添加从节点,没有检查是否已存在
CompletableFuture<Void> slaveUpFuture = entry.addSlave(uri, configEndpointHostName);
// ...
}
3.16.4版本的修复
在3.16.4版本中,添加了基本的检查逻辑,在添加从节点前会先检查该节点是否已经存在:
for (RedisURI uri : addedSlaves) {
ClientConnectionsEntry slaveEntry = entry.getEntry(uri);
// 添加了检查逻辑
if (slaveEntry != null) {
currentPart.addSlaveAddress(uri);
entry.slaveUp(uri, FreezeReason.MANAGER);
continue;
}
RFuture<Void> future = entry.addSlave(uri);
}
但这种检查并不能完全解决并发问题,因为在检查与实际添加之间仍然存在时间窗口,多个线程可能同时通过检查。
3.30.0版本的改进
最新版本中,在addSlaveEntry方法中添加了更严格的检查:
private void addSlaveEntry(ClientConnectionsEntry entry) {
if (client2Entry.get(entry.getClient()) != null) {
return; // 如果已存在则直接返回
}
// 添加新条目
slaveConnectionPool.addEntry(entry);
slavePubSubConnectionPool.addEntry(entry);
client2Entry.put(entry.getClient(), entry);
}
但这里存在一个问题:虽然避免了重复添加条目,但已经建立的连接并没有被释放,仍然可能导致连接泄漏。
解决方案建议
-
同步控制:在添加从节点的关键路径上添加同步控制,确保检查与添加操作的原子性。
-
连接清理:在发现重复添加时,不仅要拒绝添加,还应该清理已经建立的连接。
-
拓扑扫描优化:确保集群拓扑扫描操作是串行执行的,避免并发扫描导致的问题。
最佳实践
对于生产环境:
-
建议升级到最新版本,以获得最完善的修复和改进。
-
如果暂时无法升级,可以考虑实现自定义的连接管理器,增加额外的同步控制。
-
监控Redis节点的连接数,设置合理的告警阈值。
总结
Redisson在集群模式下处理从节点添加时的连接泄漏问题,反映了分布式系统中常见的并发控制挑战。随着版本的迭代,这个问题已经得到了逐步改善,但理解其本质对于正确使用和维护Redisson集群连接至关重要。对于关键业务系统,建议保持组件版本的及时更新,并建立完善的监控机制。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00