解决HuggingFace Datasets加载OpenMol/PubChemSFT数据集的问题
在使用HuggingFace Datasets库加载OpenMol/PubChemSFT数据集时,用户可能会遇到DataFilesNotFoundError错误。这个问题源于数据集文件格式的特殊性,需要采用特定的加载方式才能正确读取。
问题背景
OpenMol/PubChemSFT是一个化学领域的专业数据集,存储了大量PubChem数据库中的分子信息。当用户尝试使用标准方式加载这个数据集时:
from datasets import load_dataset
dataset = load_dataset('OpenMol/PubChemSFT')
系统会抛出DataFilesNotFoundError错误,提示"找不到(支持的)数据文件"。这是因为数据集仓库中的文件格式与Datasets库默认支持的格式不匹配。
问题原因分析
HuggingFace Datasets库默认支持多种标准数据格式,如JSON、CSV、Parquet等。然而OpenMol/PubChemSFT数据集使用了Pickle格式(.pkl)存储训练集、测试集和验证集数据,这种格式不在Datasets库的默认支持范围内。
Pickle是Python特有的序列化格式,虽然高效但存在安全风险,且缺乏跨语言兼容性。Datasets库出于安全性和通用性考虑,没有将其纳入默认支持格式。
解决方案
有两种方法可以解决这个问题:
方法一:使用Arrow格式文件
数据集仓库中同时提供了Arrow格式的文件,这是一种跨语言的高效列式存储格式。可以通过指定数据文件路径来加载:
from datasets import load_dataset
dataset = load_dataset('OpenMol/PubChemSFT', data_files='stage1/*.arrow')
Arrow格式不仅解决了兼容性问题,还具有更好的性能和内存效率,特别适合大规模数据集。
方法二:数据集维护者更新上传方式
从长远来看,更理想的解决方案是数据集维护者使用Datasets库提供的push_to_hub()
方法替代save_to_disk()
来上传数据。这种方法会自动将数据转换为标准格式,并确保与Datasets库完全兼容。
最佳实践建议
对于使用Datasets库的用户,建议:
- 优先查找数据集是否提供标准格式文件
- 对于专业领域数据集,查阅相关文档了解推荐的加载方式
- 遇到格式问题时,可以尝试指定具体文件路径加载
对于数据集维护者,建议:
- 使用Datasets库推荐的方法上传数据
- 提供多种格式的数据文件以增加兼容性
- 在README中明确说明数据格式和加载方式
通过理解这些技术细节,用户可以更顺利地使用HuggingFace生态系统中的专业数据集,充分发挥其在机器学习项目中的价值。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0330- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









