logseq-smartblocks 的项目扩展与二次开发
1. 项目的基础介绍
logseq-smartblocks 是一个开源项目,旨在为 logseq 提供智能块(Smart Blocks)功能,增强用户在使用 logseq 进行知识管理和笔记时的体验。logseq 是一个基于本地文件的 Knowledge Base 应用,适用于构建个人知识库。
2. 项目的核心功能
该项目的核心功能是增加智能块的支持,允许用户在 logseq 中创建可复用的内容块,这些内容块可以根据用户的需求动态更新。这样的功能大大提高了笔记的灵活性和重用性,使得知识库的管理更加高效。
3. 项目使用了哪些框架或库?
目前该项目主要使用 ClojureScript 进行开发,这是一种运行在浏览器中的 Lisp 方言,它允许开发者以函数式编程的方式构建应用。此外,它可能还使用了一些前端框架和库,例如 React 或 Redux,以及 logseq 本身的框架来进行扩展。
4. 项目的代码目录及介绍
项目的代码目录可能如下所示:
logseq-smartblocks/
├── src/
│ ├── cljs/
│ │ ├── smartblocks/
│ │ │ ├── core.cljs
│ │ │ ├── events.cljs
│ │ │ └── effects.cljs
│ │ └── ...
│ └── ...
├── resources/
│ └── public/
│ └── index.html
├── test/
│ └──cljs/
│ └── smartblocks/
└── ...
在这个目录结构中,src 目录包含了 ClojureScript 源代码,分为 smartblocks 子目录。这个子目录中的文件定义了智能块的核心逻辑、事件处理和副作用管理。resources 目录包含了公共资源,例如网页的入口文件 index.html。test 目录包含了测试代码,确保项目的功能按预期工作。
5. 对项目进行扩展或者二次开发的方向
-
增强智能块的功能:可以通过增加新的功能来扩展智能块,比如支持更多类型的数据嵌入、增加模板功能或者自定义块的行为。
-
用户界面优化:改进用户界面,使得创建和管理智能块更加直观和方便。
-
性能优化:对现有代码进行优化,提高智能块的处理速度和响应时间。
-
跨平台支持:扩展智能块的功能,使其能够在不同的平台和设备上无缝工作。
-
插件系统:开发一个插件系统,允许第三方开发者创建和使用自定义的智能块插件。
通过上述方向的扩展和二次开发,logseq-smartblocks 项目将能够更好地服务于更广泛的用户群体,并提升用户的知识管理体验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00