extension-create项目中内容脚本与web_accessible_resources的优化实践
在Chrome扩展开发中,内容脚本(content_scripts)和web可访问资源(web_accessible_resources)是两个关键概念。extension-create项目作为一款优秀的扩展开发工具,在处理这两者的关系上经历了一次重要的优化。
问题背景
在Chrome扩展开发中,内容脚本允许开发者将JavaScript和CSS注入到匹配的网页中。而web_accessible_resources则定义了哪些扩展内部资源可以被网页访问。这两个功能虽然相关,但并非总是需要同时使用。
在extension-create的早期版本中,存在一个设计上的问题:无论内容脚本是否实际需要访问资源,构建过程都会自动生成web_accessible_resources配置。这导致了几个问题:
- 对于纯脚本的内容脚本(不包含CSS或图片资源),生成的web_accessible_resources是多余的
- 自动生成的匹配模式有时不够精确,可能导致安全风险
- 在某些情况下,错误的匹配模式会导致扩展无法通过验证
技术实现细节
extension-create项目通过以下方式解决了这个问题:
-
智能资源检测:构建过程现在会分析内容脚本是否实际引用了需要暴露的资源(如CSS、图片等),只有真正需要的资源才会被添加到web_accessible_resources中
-
精确匹配模式生成:对于确实需要暴露的资源,系统会基于内容脚本的matches配置生成精确的URL匹配模式,而不是使用过于宽泛的
<all_urls> -
构建时验证:在构建过程中增加了对生成配置的验证,确保不会产生无效的manifest配置
开发者实践建议
基于这一优化,开发者在extension-create项目中编写内容脚本时应注意:
-
纯脚本内容脚本:如果内容脚本只包含JavaScript逻辑,不需要访问任何扩展资源,可以放心使用,系统不会再生成多余的web_accessible_resources配置
-
需要资源的内容脚本:如果内容脚本确实需要访问扩展资源(如CSS样式、图片等),建议:
- 将这些资源放在专门的目录中
- 在manifest中显式声明这些资源
- 确保匹配模式尽可能精确
-
调试技巧:如果遇到资源访问问题,可以:
- 检查构建后的manifest.json文件
- 确认web_accessible_resources配置是否符合预期
- 使用Chrome开发者工具检查资源加载情况
总结
extension-create项目的这一优化体现了对开发者体验的重视。通过智能分析内容脚本的实际需求,自动生成最合适的配置,既减少了开发者的手动配置工作,又避免了不必要的资源暴露,提高了扩展的安全性。这一改进使得开发者能够更专注于业务逻辑的实现,而不必过多担心底层配置问题。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00