TorchTitan项目中关于多GPU训练速度异常问题的技术分析
在深度学习模型的分布式训练过程中,随着GPU数量的增加,训练速度通常会因通信开销等因素而下降。然而,在PyTorch的TorchTitan项目中,研究人员观察到了一个反常现象:在使用128块GPU时,配合torch.compile技术的训练速度竟然比使用8块GPU时更快。这一现象引发了技术社区的广泛关注和讨论。
经过项目团队的深入调查,发现这一异常现象主要源于实验环境的硬件差异。具体来说:
-
硬件配置差异:128-GPU的实验运行在一个独立的区域,该区域可能使用了性能更强的H100 GPU变种。相比之下,其他规模(如8-GPU)的实验则运行在另一个区域的集群上。
-
实验验证:团队重新进行了实验验证,确认了硬件差异是导致这一异常现象的主要原因。在相同硬件环境下,训练速度确实会随着GPU数量的增加而出现预期中的下降。
此外,文章还探讨了纯FSDP(Fully Sharded Data Parallel)模式下从8GPU扩展到128GPU时的性能优化空间:
-
通信开销:FSDP中的通信操作(如每次迭代的初始all-gather)会随着GPU数量增加而显著增大。虽然大部分通信可以与计算重叠,但仍存在优化空间。
-
数据加载:数据加载器需要处理更多数据来组成一个批次,不过这部分开销通常可以被GPU计算掩盖。
-
同步操作:用于指标同步的额外all-reduce操作由于数据量较小,影响有限。
值得注意的是,性能扩展比(speedup ratio)会因具体任务而异。例如,在训练70B参数的大模型时,这个比例可能会有所不同。这说明了分布式训练性能优化的复杂性,需要结合具体场景进行分析。
这一案例提醒我们,在进行分布式训练性能对比时,必须确保实验环境的一致性,包括硬件配置、网络条件等因素。同时,也展示了PyTorch生态中torch.compile等优化技术的潜力,为未来的性能优化工作提供了重要参考。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00