ESM3项目中VQ-VAE编码器梯度更新机制解析
2025-07-06 06:13:07作者:曹令琨Iris
概述
在ESM3项目的结构VQ-VAE实现中,研究团队采用了一种创新的向量量化变分自编码器架构。这种架构在处理生物序列数据时表现出色,其核心在于如何有效地训练编码器-解码器系统,特别是在面对量化操作的非可微特性时。
VQ-VAE基本原理回顾
向量量化变分自编码器(VQ-VAE)是一种特殊的自编码器架构,它通过离散潜在空间来表示输入数据。传统VQ-VAE包含三个关键组件:
- 编码器:将输入数据映射到连续潜在空间
- 量化层:将连续潜在向量映射到离散码本中的最近邻
- 解码器:从量化后的潜在表示重建输入数据
梯度流挑战
量化操作的核心是argmin函数,它选择码本中与编码器输出最接近的向量。这一操作本质上是非可微的,给梯度反向传播带来了挑战。在标准神经网络训练中,这种不可微操作会阻断梯度流向编码器的路径,导致编码器无法更新。
ESM3的解决方案
ESM3项目采用了直通估计器(Straight-Through Estimator, STE)技术来解决这一难题。STE的核心思想是在反向传播时"绕过"不可微操作,直接将解码器接收到的梯度传递给编码器输出。具体实现方式为:
- 前向传播时正常执行量化操作,使用argmin选择码本向量
- 反向传播时,将解码器关于量化向量的梯度直接复制到编码器输出
- 码本向量通过码本损失函数单独更新
这种技术确保了编码器能够接收到有意义的梯度信号,同时保持了量化过程的离散特性。
实现细节分析
在ESM3的实现中,研究团队精心设计了梯度流路径:
- 编码器输出与码本向量之间的欧氏距离计算
- argmin操作选择最近码本索引
- 使用索引从码本中获取量化向量
- 前向传递使用量化向量
- 反向传递时梯度直接流向编码器输出
这种设计既保留了离散表示的优势,又确保了编码器能够有效学习。特别值得注意的是,码本本身的更新是通过专门的码本损失函数完成的,与编码器的梯度更新路径分开。
技术优势
ESM3采用的这种梯度处理方法具有以下优势:
- 训练稳定性:避免了传统方法中可能出现的梯度消失或爆炸问题
- 表示能力:保持了离散潜在空间的表达能力,适合生物序列数据
- 训练效率:通过分离码本更新和编码器更新路径,提高了训练效率
应用启示
这种梯度处理方法不仅适用于蛋白质序列建模,也可推广到其他需要离散表示的场景,如:
- 自然语言处理中的token表示
- 音频信号处理
- 图像压缩与生成
总结
ESM3项目中的VQ-VAE实现展示了如何巧妙处理深度学习中的不可微操作问题。通过直通估计器技术,研究团队成功构建了一个既能学习有效离散表示,又能稳定训练的编码器-解码器系统。这一技术方案为处理生物序列数据及其他需要离散表示的任务提供了有价值的参考。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
278
暂无简介
Dart
639
145
Ascend Extension for PyTorch
Python
202
219
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
React Native鸿蒙化仓库
JavaScript
246
316
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
213
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100