Keras中split_dataset函数处理CSV数据集时的Bug分析与解决
2025-04-30 18:37:58作者:咎岭娴Homer
在Keras 3.4.0及以上版本中,开发人员发现了一个与split_dataset
函数处理CSV数据集相关的Bug。这个问题主要出现在使用tf.data.experimental.make_csv_dataset
加载数据集后,再调用Keras的split_dataset
函数进行数据集分割时。
问题现象
当开发者尝试对通过make_csv_dataset
加载的CSV数据集使用split_dataset
时,会出现以下两种异常情况之一:
- 函数调用会无限期挂起,无法完成执行
- 输出的训练集和测试集中,列名与数据值会出现不匹配的情况(例如列名被随机重新分配)
问题重现
通过以下代码可以重现这个问题:
from keras.src.utils import split_dataset
import tensorflow as tf
import pandas as pd
# 创建测试数据
data_dict = {
'a': [1.] * 10,
'b': [20.] * 10,
'c': [300.] * 10,
'd': [4000.] * 10
}
df = pd.DataFrame(data_dict)
df.to_csv('test_data.csv', index=False)
# 加载CSV数据集
dataset = tf.data.experimental.make_csv_dataset('test_data.csv', batch_size=1)
# 尝试分割数据集 - 这里会出现问题
train, test = split_dataset(dataset, left_size=0.5, seed=1)
问题根源
经过Keras团队的分析,这个问题有两个主要原因:
-
无限循环问题:
make_csv_dataset
默认会生成一个无限循环的数据集(通过设置num_epochs=None
)。当split_dataset
尝试处理这种无限数据集时,会导致函数挂起。 -
列名错配问题:这个问题源于Keras的
tree
工具在处理OrderedDict
时存在的一个Bug。在Keras 3.4.0版本中引入的一个重构(PR #19911)开始使用tree
工具,而之前版本(3.3.3及以下)没有这个问题,因为它们没有使用tree
工具。
解决方案
针对这两个问题,有以下解决方案:
- 无限循环问题:在调用
make_csv_dataset
时显式设置num_epochs=1
和shuffle=False
,避免创建无限循环的数据集。
dataset = tf.data.experimental.make_csv_dataset(
'test_data.csv',
batch_size=1,
shuffle=False,
num_epochs=1
)
- 列名错配问题:Keras团队已经在PR #20481中修复了
tree
工具处理OrderedDict
的Bug。用户可以通过升级到包含这个修复的Keras版本来解决这个问题。
临时解决方案
如果无法立即升级Keras版本,可以采取以下临时解决方案:
- 将
keras.src.utils.dataset_utils
中的_restore_dataset_from_list
函数回退到3.3.3版本的实现 - 先将CSV数据集转换为Pandas DataFrame,再使用
tf.data.Dataset.from_tensor_slices
创建数据集
# 替代方案:先读取为DataFrame再转换为Dataset
df = pd.read_csv('test_data.csv')
dataset = tf.data.Dataset.from_tensor_slices(dict(df))
总结
这个Bug展示了深度学习框架中数据集处理流程的复杂性,特别是在涉及多层抽象和数据转换时。Keras团队已经识别并修复了核心问题,同时提供了多种解决方案供开发者选择。对于使用Keras处理CSV数据集的开发者,建议遵循最佳实践,明确指定数据集的epoch和shuffle参数,并保持框架版本更新。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0313- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
868
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
272
311

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
373

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
599
58

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3