Keras中split_dataset函数处理CSV数据集时的Bug分析与解决
2025-04-30 00:07:17作者:咎岭娴Homer
在Keras 3.4.0及以上版本中,开发人员发现了一个与split_dataset函数处理CSV数据集相关的Bug。这个问题主要出现在使用tf.data.experimental.make_csv_dataset加载数据集后,再调用Keras的split_dataset函数进行数据集分割时。
问题现象
当开发者尝试对通过make_csv_dataset加载的CSV数据集使用split_dataset时,会出现以下两种异常情况之一:
- 函数调用会无限期挂起,无法完成执行
- 输出的训练集和测试集中,列名与数据值会出现不匹配的情况(例如列名被随机重新分配)
问题重现
通过以下代码可以重现这个问题:
from keras.src.utils import split_dataset
import tensorflow as tf
import pandas as pd
# 创建测试数据
data_dict = {
'a': [1.] * 10,
'b': [20.] * 10,
'c': [300.] * 10,
'd': [4000.] * 10
}
df = pd.DataFrame(data_dict)
df.to_csv('test_data.csv', index=False)
# 加载CSV数据集
dataset = tf.data.experimental.make_csv_dataset('test_data.csv', batch_size=1)
# 尝试分割数据集 - 这里会出现问题
train, test = split_dataset(dataset, left_size=0.5, seed=1)
问题根源
经过Keras团队的分析,这个问题有两个主要原因:
-
无限循环问题:
make_csv_dataset默认会生成一个无限循环的数据集(通过设置num_epochs=None)。当split_dataset尝试处理这种无限数据集时,会导致函数挂起。 -
列名错配问题:这个问题源于Keras的
tree工具在处理OrderedDict时存在的一个Bug。在Keras 3.4.0版本中引入的一个重构(PR #19911)开始使用tree工具,而之前版本(3.3.3及以下)没有这个问题,因为它们没有使用tree工具。
解决方案
针对这两个问题,有以下解决方案:
- 无限循环问题:在调用
make_csv_dataset时显式设置num_epochs=1和shuffle=False,避免创建无限循环的数据集。
dataset = tf.data.experimental.make_csv_dataset(
'test_data.csv',
batch_size=1,
shuffle=False,
num_epochs=1
)
- 列名错配问题:Keras团队已经在PR #20481中修复了
tree工具处理OrderedDict的Bug。用户可以通过升级到包含这个修复的Keras版本来解决这个问题。
临时解决方案
如果无法立即升级Keras版本,可以采取以下临时解决方案:
- 将
keras.src.utils.dataset_utils中的_restore_dataset_from_list函数回退到3.3.3版本的实现 - 先将CSV数据集转换为Pandas DataFrame,再使用
tf.data.Dataset.from_tensor_slices创建数据集
# 替代方案:先读取为DataFrame再转换为Dataset
df = pd.read_csv('test_data.csv')
dataset = tf.data.Dataset.from_tensor_slices(dict(df))
总结
这个Bug展示了深度学习框架中数据集处理流程的复杂性,特别是在涉及多层抽象和数据转换时。Keras团队已经识别并修复了核心问题,同时提供了多种解决方案供开发者选择。对于使用Keras处理CSV数据集的开发者,建议遵循最佳实践,明确指定数据集的epoch和shuffle参数,并保持框架版本更新。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
402
3.12 K
Ascend Extension for PyTorch
Python
224
249
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
315
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219