在Windows Arm64平台上编译pyca/cryptography项目的技术指南
2025-05-31 00:23:15作者:农烁颖Land
背景介绍
pyca/cryptography是一个广泛使用的Python加密库,它提供了各种加密原语和协议的实现。在Windows Arm64平台上,由于缺乏预编译的wheel包,用户需要从源代码编译安装该库。本文将详细介绍在Windows Arm64系统上成功编译和运行pyca/cryptography的技术方案。
环境准备
在开始编译前,需要准备以下环境:
- Windows Arm64操作系统(如搭载Snapdragon处理器的设备)
- Python 3.12或更高版本
- Rust工具链(通过rustup安装)
- OpenSSL开发包
OpenSSL安装与配置
Windows Arm64平台需要手动安装OpenSSL开发包:
winget install ShiningLight.OpenSSL.Dev
安装完成后,设置以下环境变量:
$env:OPENSSL_DIR="C:\Program Files\OpenSSL-Win64-ARM"
$env:OPENSSL_LIB_DIR="C:\Program Files\OpenSSL-Win64-ARM\lib\VC\arm64\MT"
编译过程
- 克隆项目仓库:
git clone https://github.com/pyca/cryptography.git
cd cryptography
- 安装构建工具:
pip3 install build
- 开始构建:
python -m build
常见问题与解决方案
动态链接库缺失问题
编译过程可能顺利完成,但在运行时会出现ImportError: DLL load failed错误,提示无法加载_rust模块。这是因为Rust编译器未能正确静态链接OpenSSL的动态库。
使用dumpbin /DEPENDENTS工具检查生成的_rust.pyd文件,可以发现它依赖以下两个动态库:
- libcrypto-3-arm64.dll
- libssl-3-arm64.dll
解决方案
- 手动复制动态库到正确位置:
import shutil
shutil.copy(".\\OpenSSL-Win64-ARM\\bin\\libcrypto-3-arm64.dll", ".\\cryptography\\hazmat\\bindings\\libcrypto-3-arm64.dll")
shutil.copy(".\\OpenSSL-Win64-ARM\\bin\\libssl-3-arm64.dll", ".\\cryptography\\hazmat\\bindings\\libssl-3-arm64.dll")
- 添加动态库搜索路径:
import os
os.add_dll_directory(os.path.abspath(".\\cryptography\\hazmat\\bindings\\"))
- 设置环境变量避免遗留问题:
os.environ["CRYPTOGRAPHY_OPENSSL_NO_LEGACY"] = "1"
性能与兼容性考虑
- 静态链接的
_rust.pyd文件大小约为8MB,而动态链接版本约为3MB - 动态链接方式需要确保目标系统上有兼容的OpenSSL版本
- 静态链接方式更适合分发,但会增加二进制文件大小
最佳实践建议
- 对于开发环境,推荐使用动态链接方式,便于更新OpenSSL
- 对于生产环境,考虑使用静态链接或确保目标系统有正确的OpenSSL版本
- 在Docker容器中部署时,可以预先安装所需版本的OpenSSL
总结
在Windows Arm64平台上编译pyca/cryptography项目需要特别注意OpenSSL的配置和链接方式。通过本文介绍的方法,开发者可以成功构建并使用这个强大的加密库。随着ARM架构在Windows平台的普及,预计未来会有更多预编译的wheel包可供使用,简化安装过程。
对于需要深度定制的用户,理解项目的构建过程和依赖关系至关重要。本文提供的解决方案不仅解决了当前问题,也为处理类似情况提供了参考思路。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1