在Windows Arm64平台上编译pyca/cryptography项目的技术指南
2025-05-31 08:16:17作者:农烁颖Land
背景介绍
pyca/cryptography是一个广泛使用的Python加密库,它提供了各种加密原语和协议的实现。在Windows Arm64平台上,由于缺乏预编译的wheel包,用户需要从源代码编译安装该库。本文将详细介绍在Windows Arm64系统上成功编译和运行pyca/cryptography的技术方案。
环境准备
在开始编译前,需要准备以下环境:
- Windows Arm64操作系统(如搭载Snapdragon处理器的设备)
- Python 3.12或更高版本
- Rust工具链(通过rustup安装)
- OpenSSL开发包
OpenSSL安装与配置
Windows Arm64平台需要手动安装OpenSSL开发包:
winget install ShiningLight.OpenSSL.Dev
安装完成后,设置以下环境变量:
$env:OPENSSL_DIR="C:\Program Files\OpenSSL-Win64-ARM"
$env:OPENSSL_LIB_DIR="C:\Program Files\OpenSSL-Win64-ARM\lib\VC\arm64\MT"
编译过程
- 克隆项目仓库:
git clone https://github.com/pyca/cryptography.git
cd cryptography
- 安装构建工具:
pip3 install build
- 开始构建:
python -m build
常见问题与解决方案
动态链接库缺失问题
编译过程可能顺利完成,但在运行时会出现ImportError: DLL load failed错误,提示无法加载_rust模块。这是因为Rust编译器未能正确静态链接OpenSSL的动态库。
使用dumpbin /DEPENDENTS工具检查生成的_rust.pyd文件,可以发现它依赖以下两个动态库:
- libcrypto-3-arm64.dll
- libssl-3-arm64.dll
解决方案
- 手动复制动态库到正确位置:
import shutil
shutil.copy(".\\OpenSSL-Win64-ARM\\bin\\libcrypto-3-arm64.dll", ".\\cryptography\\hazmat\\bindings\\libcrypto-3-arm64.dll")
shutil.copy(".\\OpenSSL-Win64-ARM\\bin\\libssl-3-arm64.dll", ".\\cryptography\\hazmat\\bindings\\libssl-3-arm64.dll")
- 添加动态库搜索路径:
import os
os.add_dll_directory(os.path.abspath(".\\cryptography\\hazmat\\bindings\\"))
- 设置环境变量避免遗留问题:
os.environ["CRYPTOGRAPHY_OPENSSL_NO_LEGACY"] = "1"
性能与兼容性考虑
- 静态链接的
_rust.pyd文件大小约为8MB,而动态链接版本约为3MB - 动态链接方式需要确保目标系统上有兼容的OpenSSL版本
- 静态链接方式更适合分发,但会增加二进制文件大小
最佳实践建议
- 对于开发环境,推荐使用动态链接方式,便于更新OpenSSL
- 对于生产环境,考虑使用静态链接或确保目标系统有正确的OpenSSL版本
- 在Docker容器中部署时,可以预先安装所需版本的OpenSSL
总结
在Windows Arm64平台上编译pyca/cryptography项目需要特别注意OpenSSL的配置和链接方式。通过本文介绍的方法,开发者可以成功构建并使用这个强大的加密库。随着ARM架构在Windows平台的普及,预计未来会有更多预编译的wheel包可供使用,简化安装过程。
对于需要深度定制的用户,理解项目的构建过程和依赖关系至关重要。本文提供的解决方案不仅解决了当前问题,也为处理类似情况提供了参考思路。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0114
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
114
仓颉编译器源码及 cjdb 调试工具。
C++
138
869