Magentic项目中处理Anthropic模型思考标记与函数调用的技术解析
2025-07-03 15:17:49作者:霍妲思
背景介绍
在大型语言模型应用开发中,函数调用(function calling)是一个非常重要的功能,它允许模型在执行过程中调用开发者定义的外部函数来获取额外信息或执行特定操作。Magentic作为一个Python框架,提供了便捷的方式来集成这一功能。
问题现象
当使用Anthropic的Claude模型时,开发者遇到了一个特殊现象:模型在响应中会包含<thinking></thinking>
标记内的内容,这是Anthropic特有的"思维链"(chain-of-thought)提示技术,用于提高函数调用的准确性。然而,这种结构导致Magentic框架在流式传输(streaming)响应时无法正确识别函数调用。
技术分析
-
响应结构特点:
- Anthropic模型的响应会先输出思考过程
- 思考内容包裹在
<thinking>
XML标签中 - 实际的函数调用内容在思考内容之后
-
框架处理难点:
- 在流式传输模式下,框架需要即时判断响应类型
- 初始部分看起来像纯文本响应
- 完整解析需要等待整个响应完成
-
解决方案演进:
- 早期版本(0.24.0之前)可以正常工作,因为完整响应一次性解析
- 新版本引入流式处理后需要特殊处理思考标记
最佳实践
Magentic在0.34.0版本中引入了StreamedResponse
类型,为这类复杂场景提供了优雅的解决方案:
from magentic import prompt, FunctionCall, StreamedResponse, StreamedStr
def get_weather(city: str) -> str:
return f"The weather in {city} is 20°C."
@prompt(
"Say hello, then get the weather for: {cities}",
functions=[get_weather],
)
def describe_weather(cities: list[str]) -> StreamedResponse: ...
response = describe_weather(["Cape Town", "San Francisco"])
for item in response:
if isinstance(item, StreamedStr):
for chunk in item:
print(chunk, sep="", end="")
print()
if isinstance(item, FunctionCall):
print(item)
print(item())
技术展望
未来可能会进一步扩展AssistantMessage
类型,创建专门的AnthropicAssistantMessage
子类,将思考内容作为额外属性暴露给开发者。这种设计既保持了API的通用性,又为特定模型提供了扩展能力。
总结
处理大型语言模型的特有行为是集成框架面临的常见挑战。Magentic通过引入StreamedResponse
等抽象,既保留了流式处理的优势,又解决了Anthropic模型思考标记带来的解析问题,展示了良好的设计灵活性和扩展性。开发者在使用时应注意模型特定的行为模式,并选择合适版本的框架功能。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K