Magentic项目中处理Anthropic模型思考标记与函数调用的技术解析
2025-07-03 15:17:49作者:霍妲思
背景介绍
在大型语言模型应用开发中,函数调用(function calling)是一个非常重要的功能,它允许模型在执行过程中调用开发者定义的外部函数来获取额外信息或执行特定操作。Magentic作为一个Python框架,提供了便捷的方式来集成这一功能。
问题现象
当使用Anthropic的Claude模型时,开发者遇到了一个特殊现象:模型在响应中会包含<thinking></thinking>
标记内的内容,这是Anthropic特有的"思维链"(chain-of-thought)提示技术,用于提高函数调用的准确性。然而,这种结构导致Magentic框架在流式传输(streaming)响应时无法正确识别函数调用。
技术分析
-
响应结构特点:
- Anthropic模型的响应会先输出思考过程
- 思考内容包裹在
<thinking>
XML标签中 - 实际的函数调用内容在思考内容之后
-
框架处理难点:
- 在流式传输模式下,框架需要即时判断响应类型
- 初始部分看起来像纯文本响应
- 完整解析需要等待整个响应完成
-
解决方案演进:
- 早期版本(0.24.0之前)可以正常工作,因为完整响应一次性解析
- 新版本引入流式处理后需要特殊处理思考标记
最佳实践
Magentic在0.34.0版本中引入了StreamedResponse
类型,为这类复杂场景提供了优雅的解决方案:
from magentic import prompt, FunctionCall, StreamedResponse, StreamedStr
def get_weather(city: str) -> str:
return f"The weather in {city} is 20°C."
@prompt(
"Say hello, then get the weather for: {cities}",
functions=[get_weather],
)
def describe_weather(cities: list[str]) -> StreamedResponse: ...
response = describe_weather(["Cape Town", "San Francisco"])
for item in response:
if isinstance(item, StreamedStr):
for chunk in item:
print(chunk, sep="", end="")
print()
if isinstance(item, FunctionCall):
print(item)
print(item())
技术展望
未来可能会进一步扩展AssistantMessage
类型,创建专门的AnthropicAssistantMessage
子类,将思考内容作为额外属性暴露给开发者。这种设计既保持了API的通用性,又为特定模型提供了扩展能力。
总结
处理大型语言模型的特有行为是集成框架面临的常见挑战。Magentic通过引入StreamedResponse
等抽象,既保留了流式处理的优势,又解决了Anthropic模型思考标记带来的解析问题,展示了良好的设计灵活性和扩展性。开发者在使用时应注意模型特定的行为模式,并选择合适版本的框架功能。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0105AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
207
2.2 K

暂无简介
Dart
519
115

Ascend Extension for PyTorch
Python
62
94

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
209
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
577

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193