Apache Sling Scripting SPI 项目教程
2024-08-07 00:34:57作者:仰钰奇
1. 项目的目录结构及介绍
Apache Sling Scripting SPI 项目的目录结构如下:
sling-org-apache-sling-scripting-spi/
├── src/
│ └── main/
│ └── java/
│ └── org/
│ └── apache/
│ └── sling/
│ └── scripting/
│ └── spi/
│ ├── BundledRenderUnit.java
│ ├── BundledRenderUnitCapability.java
│ ├── BundledRenderUnitFinder.java
│ └── TypeProvider.java
├── .asf.yaml
├── .gitignore
├── CODE_OF_CONDUCT.md
├── CONTRIBUTING.md
├── Jenkinsfile
├── LICENSE
├── README.md
├── asf-yaml
├── pom.xml
目录结构介绍
src/main/java/org/apache/sling/scripting/spi/: 包含项目的主要源代码文件。BundledRenderUnit.java: 定义了捆绑渲染单元的接口。BundledRenderUnitCapability.java: 定义了捆绑渲染单元能力的接口。BundledRenderUnitFinder.java: 定义了查找捆绑渲染单元的接口。TypeProvider.java: 定义了类型提供者的接口。
.asf.yaml: Apache 软件基金会配置文件。.gitignore: Git 忽略文件配置。CODE_OF_CONDUCT.md: 行为准则文件。CONTRIBUTING.md: 贡献指南文件。Jenkinsfile: Jenkins 持续集成配置文件。LICENSE: 项目许可证文件。README.md: 项目说明文件。asf-yaml: Apache 软件基金会配置文件。pom.xml: Maven 项目对象模型文件。
2. 项目的启动文件介绍
Apache Sling Scripting SPI 项目没有明确的启动文件,因为它主要提供接口和功能供其他模块使用。项目的核心功能通过接口定义在 src/main/java/org/apache/sling/scripting/spi/ 目录下的文件中。
3. 项目的配置文件介绍
pom.xml
pom.xml 是 Maven 项目对象模型文件,包含了项目的依赖、构建配置等信息。以下是部分关键配置:
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.apache.sling</groupId>
<artifactId>org.apache.sling.scripting.spi</artifactId>
<version>1.0.2</version>
<packaging>bundle</packaging>
<name>Apache Sling Scripting SPI</name>
<description>This module is part of the Apache Sling project.</description>
<url>https://sling.apache.org/</url>
<licenses>
<license>
<name>Apache License, Version 2.0</name>
<url>https://www.apache.org/licenses/LICENSE-2.0.txt</url>
</license>
</licenses>
<dependencies>
<!-- 依赖列表 -->
</dependencies>
<build>
<plugins>
<!-- 构建插件配置 -->
</plugins>
</build>
</project>
.asf.yaml
.asf.yaml 是 Apache 软件基金会配置文件,用于管理项目的元数据和配置。
.gitignore
.gitignore 文件用于指定 Git 版本控制系统忽略的文件和目录。
CODE_OF_CONDUCT.md
CODE_OF_CONDUCT.md 文件定义了项目的行为准则,指导贡献者的行为。
CONTRIBUTING.md
CONTRIBUTING.md 文件提供了贡献指南,帮助开发者了解如何为项目做出贡献。
Jenkinsfile
Jenkinsfile
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
304
2.68 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
133
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
222
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
459
暂无简介
Dart
595
130
React Native鸿蒙化仓库
JavaScript
232
307
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
613
仓颉编译器源码及 cjdb 调试工具。
C++
123
612
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
361
2.56 K