Hanami框架中自动集成ROM扩展的实现方案
在Hanami框架的开发过程中,我们发现了一个可以优化的地方——关于dry-operation操作类中ROM扩展的自动包含问题。本文将详细介绍这一技术改进的背景、实现思路及其意义。
背景与问题
在Hanami应用中,当我们需要使用数据库事务功能时,通常会在dry-operation操作类中包含Dry::Operation::Extensions::ROM模块。这行代码虽然简单,但却成为了应用中重复出现的样板代码。特别是在Hanami CLI工具的PR#180中,我们暂时引入了这行代码作为过渡方案。
技术方案
为了解决这个问题,我们计划在Hanami框架内部实现自动包含ROM扩展的功能。具体实现方式是在lib/hanami/extensions/目录下添加相关代码,负责自动扩展dry-operation类。
实现细节
-
扩展机制:通过Hanami的扩展系统,在框架初始化时自动为所有dry-operation类包含必要的ROM扩展模块。
-
事务支持:ROM扩展主要提供了
transaction do...end这一便捷的事务处理助手方法,使得开发者可以更简洁地处理数据库事务。 -
自动包含:通过这种方式,开发者不再需要手动添加
include Dry::Operation::Extensions::ROM这行代码,框架会自动处理这一依赖关系。
技术优势
-
减少样板代码:消除了应用中重复出现的包含语句,使代码更加简洁。
-
一致性保证:确保所有操作类都能获得相同的ROM扩展功能,避免因遗漏包含语句导致的功能缺失。
-
开发者体验:降低了开发者的认知负担,使他们能够更专注于业务逻辑的实现。
实现考量
-
向后兼容:确保这一改动不会影响现有应用的正常运行。
-
性能影响:自动包含机制需要确保不会对应用性能产生负面影响。
-
可测试性:提供适当的测试覆盖,确保功能的稳定性。
总结
这一改进虽然看似微小,但却体现了Hanami框架对开发者体验的持续优化。通过自动包含ROM扩展,我们不仅减少了样板代码,还提高了代码的一致性和可维护性。这种关注细节的改进正是Hanami框架追求卓越开发体验的体现。
未来,我们还将继续寻找类似的优化机会,进一步简化Hanami应用的开发流程,让开发者能够更高效地构建高质量的应用程序。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00