S2R-DepthNet 使用指南
项目介绍
S2R-DepthNet 是微软发布的一个深度学习框架,旨在学习一种可泛化的深度特异性结构表示(Generalizable Depth-specific Structural Representation)。该框架提出了一种新颖的方法,用于无需真实世界数据即可直接将模型应用于实际场景,尽管它仅基于合成数据进行训练。S2R-DepthNet 结构包含结构提取(Structure Extraction, STE)模块、深度特定注意力(Depth-specific Attention, DSA)模块以及深度预测模块,这些设计共同提升了深度估计任务的泛化能力和准确性。论文发表于 CVPR 2021 并进行了口头报告。
项目快速启动
准备工作
确保你的开发环境中已安装以下依赖项:
- Python 3.6.9
- PyTorch 1.7.1
- torchvision 0.8.2+cu101
- TensorboardX 2.1
- Matplotlib 3.3.4
- Pillow 8.1.2
获取源码与数据集
克隆项目到本地:
git clone https://github.com/microsoft/S2R-DepthNet.git
准备合成数据集(如 vKITTI)和真实数据集(如 KITTI 或 NYUD-v2)。
训练 S2R-DepthNet
以训练结构解码器为例,运行以下命令:
python train.py --syn_dataset VKITTI \
--syn_root "你的vKITTI数据路径" \
--syn_train_datafile datasets/vkitti/train.txt \
--batchSize 32 \
--loadSize 192 640 \
--Shared_Struct_Encoder_path "预训练结构编码器的路径.pth"
之后,继续训练 DSA 模块和深度预测模块:
python train.py --syn_dataset VKITTI \
--syn_root "你的vKITTI数据路径" \
--syn_train_datafile datasets/vkitti/train.txt \
--batchSize 32 \
--loadSize 192 640 \
--Shared_Struct_Encoder_path "预训练结构编码器的路径.pth" \
--Struct_Decoder_path "预训练结构解码器的路径.pth" \
--train_stage TrainDSAandDPModule
应用案例和最佳实践
S2R-DepthNet 被广泛应用在跨领域深度估计任务中,特别是在缺少对应的真实世界标注数据时。最佳实践建议:
- 利用其良好的泛化能力,先在大规模的合成数据集上充分训练。
- 在少量真实数据上进行微调,以优化模型对具体环境的适应性。
- 评估时,在目标数据集(如 KITTI 或 NYUD-v2)上进行性能测试,关注模型的稳定性和精度提升。
例如,评估模型在 KITTI 上的性能:
python test.py --dataset KITTI \
--root "你的KITTI数据路径" \
--test_datafile datasets/kitti/test.txt \
--loadSize 192 640 \
--Shared_Struct_Encoder_path "预训练结构编码器的路径.pth" \
...
典型生态项目
由于 S2R-DepthNet 直接关联的生态项目未在提供的资料中详细列出,开发者社区常将此类技术应用于自动驾驶、机器人导航、增强现实等领域。对于希望实现类似深度估计功能的应用开发者而言,可以探索结合 SLAM(Simultaneous Localization and Mapping)、ARKit(针对苹果设备)或ARCore(谷歌平台)等技术,以提升应用的三维理解和交互能力。
请注意,为了达到最佳效果,应当参考项目的最新文档并关注可能的更新与改进。上述命令和步骤可能会随着库的升级而变化,务必检查仓库的最新说明。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00