S2R-DepthNet 使用指南
项目介绍
S2R-DepthNet 是微软发布的一个深度学习框架,旨在学习一种可泛化的深度特异性结构表示(Generalizable Depth-specific Structural Representation)。该框架提出了一种新颖的方法,用于无需真实世界数据即可直接将模型应用于实际场景,尽管它仅基于合成数据进行训练。S2R-DepthNet 结构包含结构提取(Structure Extraction, STE)模块、深度特定注意力(Depth-specific Attention, DSA)模块以及深度预测模块,这些设计共同提升了深度估计任务的泛化能力和准确性。论文发表于 CVPR 2021 并进行了口头报告。
项目快速启动
准备工作
确保你的开发环境中已安装以下依赖项:
- Python 3.6.9
- PyTorch 1.7.1
- torchvision 0.8.2+cu101
- TensorboardX 2.1
- Matplotlib 3.3.4
- Pillow 8.1.2
获取源码与数据集
克隆项目到本地:
git clone https://github.com/microsoft/S2R-DepthNet.git
准备合成数据集(如 vKITTI)和真实数据集(如 KITTI 或 NYUD-v2)。
训练 S2R-DepthNet
以训练结构解码器为例,运行以下命令:
python train.py --syn_dataset VKITTI \
--syn_root "你的vKITTI数据路径" \
--syn_train_datafile datasets/vkitti/train.txt \
--batchSize 32 \
--loadSize 192 640 \
--Shared_Struct_Encoder_path "预训练结构编码器的路径.pth"
之后,继续训练 DSA 模块和深度预测模块:
python train.py --syn_dataset VKITTI \
--syn_root "你的vKITTI数据路径" \
--syn_train_datafile datasets/vkitti/train.txt \
--batchSize 32 \
--loadSize 192 640 \
--Shared_Struct_Encoder_path "预训练结构编码器的路径.pth" \
--Struct_Decoder_path "预训练结构解码器的路径.pth" \
--train_stage TrainDSAandDPModule
应用案例和最佳实践
S2R-DepthNet 被广泛应用在跨领域深度估计任务中,特别是在缺少对应的真实世界标注数据时。最佳实践建议:
- 利用其良好的泛化能力,先在大规模的合成数据集上充分训练。
- 在少量真实数据上进行微调,以优化模型对具体环境的适应性。
- 评估时,在目标数据集(如 KITTI 或 NYUD-v2)上进行性能测试,关注模型的稳定性和精度提升。
例如,评估模型在 KITTI 上的性能:
python test.py --dataset KITTI \
--root "你的KITTI数据路径" \
--test_datafile datasets/kitti/test.txt \
--loadSize 192 640 \
--Shared_Struct_Encoder_path "预训练结构编码器的路径.pth" \
...
典型生态项目
由于 S2R-DepthNet 直接关联的生态项目未在提供的资料中详细列出,开发者社区常将此类技术应用于自动驾驶、机器人导航、增强现实等领域。对于希望实现类似深度估计功能的应用开发者而言,可以探索结合 SLAM(Simultaneous Localization and Mapping)、ARKit(针对苹果设备)或ARCore(谷歌平台)等技术,以提升应用的三维理解和交互能力。
请注意,为了达到最佳效果,应当参考项目的最新文档并关注可能的更新与改进。上述命令和步骤可能会随着库的升级而变化,务必检查仓库的最新说明。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~055CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0380- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









