NVlabs/Sana项目训练过程中的显存优化与性能调优实践
2025-06-16 13:28:39作者:何将鹤
训练配置与显存问题分析
在NVlabs/Sana项目的实际训练过程中,用户反馈在48GB显存的A40显卡上,即使设置batch size为1也会出现显存不足(OOM)的问题。通过分析训练日志,我们发现主要瓶颈出现在以下几个环节:
- 模型规模:Sana_1600M_img1024配置使用的是16亿参数的模型,相比传统SDXL模型更大
- 特征提取:VAE和文本编码器都在训练过程中实时提取特征,没有使用预计算缓存
- 优化器选择:默认使用的CAME优化器相比AdamW会占用更多显存
显存优化方案
优化器调整
将优化器从CAME切换为AdamW可以显著降低显存占用。在配置文件中进行如下修改:
train:
optimizer:
type: AdamW
lr: 1.0e-4
weight_decay: 0.01
eps: 1.0e-8
betas: [0.9, 0.999]
这一调整可以使显存占用从接近48GB降低到更可控的水平,为其他操作留出空间。
分桶训练策略
项目中引入了分桶(bucketing)训练策略,这是针对不同分辨率图像的高效训练方法。该策略通过:
- 将训练图像按长宽比分组
- 在每个batch中使用相同或相似分辨率的图像
- 减少因padding导致的显存浪费
实现这一策略需要对训练脚本进行修改,包括创建分桶逻辑和调整数据加载流程。
混合精度训练
使用BF16混合精度训练可以进一步优化显存使用:
model:
mixed_precision: bf16
需要注意的是:
- 从FP16切换到BF16时,训练需要重新开始
- 不需要重新计算VAE的潜在特征
- 优化器本身不需要改为BF16版本
训练性能分析
损失函数特性
Sana项目采用了不同于传统DDPM的流匹配(Flow Matching)训练策略,这导致:
- 最终收敛的损失值较高(1024px约0.7,512px约0.8)
- 与SDXL(约0.13)等模型的损失值不可直接比较
- 属于正常现象,与模型性能无直接关联
学习率设置
对于包含新概念的数据集,建议使用较高的学习率(1e-4)。实际训练中发现:
- 学习率低于5e-5时模型学习速度明显变慢
- 需要约10,000步才能开始掌握基本概念
- 高质量与低质量图像的对比训练可以带来一定改善
渐进式训练策略
针对显存限制,可以采用渐进式训练方法:
- 先用小数据集(4k图像)训练4个epoch
- 分析结果后调整参数(如学习率)
- 逐步添加新数据(每次增加2k图像)
- 重复训练4-8个epoch
这种方法模拟了人类渐进学习的过程,相比一次性大规模训练更适合资源有限的情况。
总结与建议
NVlabs/Sana项目作为大规模扩散模型,对硬件资源要求较高。通过优化器调整、分桶策略和混合精度训练可以有效降低显存需求。对于资源有限的开发者,建议:
- 优先使用AdamW优化器
- 启用分桶训练策略
- 考虑使用BF16混合精度
- 采用渐进式训练方法
- 合理设置学习率(1e-4为佳)
这些优化措施可以使16亿参数的模型在48GB显存的显卡上稳定训练,为研究者提供了可行的解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134