Randoop 使用教程
2024-09-18 06:12:06作者:齐添朝
1. 项目介绍
Randoop 是一个用于 Java 的单元测试生成工具。它能够自动为你的 Java 类生成 JUnit 格式的单元测试。Randoop 使用反馈导向的随机测试生成技术,通过伪随机但智能地生成方法/构造函数调用序列来测试目标类。Randoop 执行这些生成的序列,并使用执行结果创建断言,以捕获程序的行为。Randoop 可以用于两个目的:发现程序中的错误,以及创建回归测试,以在未来程序行为发生变化时发出警告。
2. 项目快速启动
安装 Randoop
Randoop 运行在 Java 8 或更高版本的 JVM 上。你可以通过以下步骤快速安装和运行 Randoop:
-
下载 Randoop:
wget https://github.com/randoop/randoop/releases/download/v4.3.3/randoop-4.3.3.zip unzip randoop-4.3.3.zip -
设置环境变量:
export RANDOOP_PATH=$(pwd)/randoop-4.3.3 export RANDOOP_JAR=$RANDOOP_PATH/randoop-all-4.3.3.jar -
运行 Randoop:
java -Xmx3000m -classpath $RANDOOP_JAR randoop.main.Main gentests --testclass=java.util.TreeSet --output-limit=100
生成测试示例
假设你想为 java.util.Collections 类生成测试,你可以创建一个文件 myclasses.txt,列出要测试的类:
java.util.Collections
java.util.TreeSet
然后运行 Randoop:
java -classpath $RANDOOP_JAR randoop.main.Main gentests --classlist=myclasses.txt --time-limit=60
Randoop 将在 60 秒后停止生成测试,并输出生成的 JUnit 文件路径。
3. 应用案例和最佳实践
应用案例
Randoop 在许多成功的应用中表现出色,特别是在库类(如 java.util)的测试中。以下是一个使用 Randoop 生成测试并发现 OpenJDK 错误的示例:
// 这个测试展示了 JDK 集合类可以创建一个不等于自身的对象
@Test
public static void test1() {
LinkedList list = new LinkedList();
Object o1 = new Object();
list.addFirst(o1);
// TreeSet 是一个有序集合,根据 API 文档,这个构造函数调用应该抛出 ClassCastException
// 因为列表元素不可比较。但构造函数静默(且有问题地)接受列表
TreeSet t1 = new TreeSet(list);
Set s1 = Collections.synchronizedSet(t1);
// 此时,我们成功创建了一个集合(s1),它违反了相等性的自反性:它不等于自身
// 这个断言在 OpenJDK 上运行时失败
org.junit.Assert.assertEquals(s1, s1);
}
最佳实践
- 修复错误并重新运行:如果 Randoop 输出了任何揭示错误的测试,修复底层缺陷,然后重新运行 Randoop,直到不再输出揭示错误的测试。
- 添加回归测试:将回归测试添加到项目的测试套件中,并在每次更改项目时运行这些测试。这些测试将通知你程序行为的变化。
- 最小化测试用例:如果测试失败,最小化测试用例,然后调查失败原因。
4. 典型生态项目
Randoop 可以与其他测试工具和框架结合使用,以增强测试覆盖率和效率。以下是一些典型的生态项目:
- JUnit:Randoop 生成的测试是 JUnit 格式的,可以直接与 JUnit 集成。
- Mockito:用于模拟对象,可以在 Randoop 生成的测试中使用 Mockito 来模拟依赖。
- JaCoCo:用于代码覆盖率分析,可以与 Randoop 结合使用,以评估生成的测试的覆盖率。
通过结合这些工具,可以构建一个强大的自动化测试环境,确保代码质量和稳定性。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
317
2.74 K
仓颉编译器源码及 cjdb 调试工具。
C++
124
852
Ascend Extension for PyTorch
Python
155
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
639
246
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
241
85
暂无简介
Dart
606
136
React Native鸿蒙化仓库
JavaScript
239
310
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
470
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
364
3.02 K