Paddle-Lite在Raspberry Pi 5/4上的编译优化工具构建问题解析
问题背景
在Raspberry Pi 5和4设备上使用Paddle-Lite的build_linux.sh脚本构建优化工具时,开发者可能会遇到两个关键问题,这些问题会导致编译过程失败。本文将详细分析这些问题及其解决方案。
问题一:GCC 12.2与第三方protobuf的兼容性问题
最新版本的GCC 12.2编译器在编译Paddle-Lite提供的第三方protobuf库时会出现编译错误。这是因为GCC 12.2对C++标准的合规性检查更加严格,而protobuf库中的某些代码不符合最新的标准要求。
具体错误发生在文件thrid-party/protobuf-host/src/第三方库/protobuf/compiler/java/java_file.cc的第68行。该行代码缺少必要的const限定符,导致编译器报错。
解决方案
要解决这个问题,需要在该文件的第68行末尾添加const限定符。修改后的代码应该如下所示:
// 修改前
int JavaFileGenerator::Generate(io::Printer* printer) {
// 修改后
int JavaFileGenerator::Generate(io::Printer* printer) const {
这个简单的修改就能使代码符合GCC 12.2的编译要求,解决编译错误。
问题二:构建脚本的硬件平台适配问题
build_linux.sh脚本默认配置是针对x86架构的,当在Raspberry Pi等ARM架构设备上运行时,会导致错误的平台配置。具体表现为:
-- LITE_WITH_X86: ON
-- LITE_WITH_ARM: OFF
这显然不适合在ARM设备上构建优化工具。
解决方案
需要修改build_linux.sh脚本中的build_opt函数,明确指定ARM平台相关参数。修改后的函数应该如下所示:
function build_opt {
rm -f $workspace/lite/api/paddle_use_ops.h
rm -f $workspace/lite/api/paddle_use_kernels.h
prepare_thirdparty
build_dir=$workspace/build.opt
rm -rf $build_dir
mkdir -p $build_dir
cd $build_dir
cmake $workspace \
-DARM_TARGET_OS=armlinux \
-DLITE_ON_MODEL_OPTIMIZE_TOOL=ON \
-DWITH_TESTING=OFF \
-DLITE_WITH_X86=OFF \
-DLITE_WITH_ARM=ON \
-DLITE_BUILD_EXTRA=ON \
-DWITH_MKL=OFF
make opt -j$NUM_PROC
}
关键修改点包括:
- 添加
-DARM_TARGET_OS=armlinux参数 - 将
-DLITE_WITH_X86设为OFF - 将
-DLITE_WITH_ARM设为ON
修改后,CMake配置将正确识别目标平台为ARM架构,输出如下:
-- LITE_WITH_X86: OFF
-- LITE_WITH_ARM: ON
总结
在Raspberry Pi 5/4设备上构建Paddle-Lite优化工具时,开发者需要注意两个关键问题:GCC版本兼容性和构建脚本的平台适配。通过本文提供的解决方案,开发者可以顺利完成优化工具的构建,为后续的模型优化和部署工作奠定基础。
这些修改不仅适用于Raspberry Pi设备,对于其他基于ARM架构的Linux设备也同样适用,具有较广的适用性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00