Paddle-Lite在Raspberry Pi 5/4上的编译优化工具构建问题解析
问题背景
在Raspberry Pi 5和4设备上使用Paddle-Lite的build_linux.sh脚本构建优化工具时,开发者可能会遇到两个关键问题,这些问题会导致编译过程失败。本文将详细分析这些问题及其解决方案。
问题一:GCC 12.2与第三方protobuf的兼容性问题
最新版本的GCC 12.2编译器在编译Paddle-Lite提供的第三方protobuf库时会出现编译错误。这是因为GCC 12.2对C++标准的合规性检查更加严格,而protobuf库中的某些代码不符合最新的标准要求。
具体错误发生在文件thrid-party/protobuf-host/src/第三方库/protobuf/compiler/java/java_file.cc的第68行。该行代码缺少必要的const限定符,导致编译器报错。
解决方案
要解决这个问题,需要在该文件的第68行末尾添加const限定符。修改后的代码应该如下所示:
// 修改前
int JavaFileGenerator::Generate(io::Printer* printer) {
// 修改后
int JavaFileGenerator::Generate(io::Printer* printer) const {
这个简单的修改就能使代码符合GCC 12.2的编译要求,解决编译错误。
问题二:构建脚本的硬件平台适配问题
build_linux.sh脚本默认配置是针对x86架构的,当在Raspberry Pi等ARM架构设备上运行时,会导致错误的平台配置。具体表现为:
-- LITE_WITH_X86: ON
-- LITE_WITH_ARM: OFF
这显然不适合在ARM设备上构建优化工具。
解决方案
需要修改build_linux.sh脚本中的build_opt函数,明确指定ARM平台相关参数。修改后的函数应该如下所示:
function build_opt {
rm -f $workspace/lite/api/paddle_use_ops.h
rm -f $workspace/lite/api/paddle_use_kernels.h
prepare_thirdparty
build_dir=$workspace/build.opt
rm -rf $build_dir
mkdir -p $build_dir
cd $build_dir
cmake $workspace \
-DARM_TARGET_OS=armlinux \
-DLITE_ON_MODEL_OPTIMIZE_TOOL=ON \
-DWITH_TESTING=OFF \
-DLITE_WITH_X86=OFF \
-DLITE_WITH_ARM=ON \
-DLITE_BUILD_EXTRA=ON \
-DWITH_MKL=OFF
make opt -j$NUM_PROC
}
关键修改点包括:
- 添加
-DARM_TARGET_OS=armlinux参数 - 将
-DLITE_WITH_X86设为OFF - 将
-DLITE_WITH_ARM设为ON
修改后,CMake配置将正确识别目标平台为ARM架构,输出如下:
-- LITE_WITH_X86: OFF
-- LITE_WITH_ARM: ON
总结
在Raspberry Pi 5/4设备上构建Paddle-Lite优化工具时,开发者需要注意两个关键问题:GCC版本兼容性和构建脚本的平台适配。通过本文提供的解决方案,开发者可以顺利完成优化工具的构建,为后续的模型优化和部署工作奠定基础。
这些修改不仅适用于Raspberry Pi设备,对于其他基于ARM架构的Linux设备也同样适用,具有较广的适用性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00