Apache Pinot 开源项目实战指南
项目介绍
Apache Pinot 是一款实时分布式 OLAP 数据存储系统,旨在提供超低延迟的分析能力,以支持大规模数据流通过高吞吐量处理。最初由 LinkedIn 开发,Pinot 设计用于实现毫秒级响应时间的实时数据分析,适合于数据驱动决策及构建交互式分析应用。它具备高效的列式存储结构,可插拔索引技术,并且能够支持流式和批处理的数据摄入。
项目快速启动
要快速体验 Apache Pinot,您首先需要安装必要的环境。以下是一个简化的起始步骤,展示了如何搭建一个基本的 Pinot 环境。
步骤1:安装Java环境
确保您的系统中已安装 Java Development Kit (JDK) 8 或更高版本。
java -version
步骤2:下载并解压 Pinot
从 Apache Pinot 官方网站 下载最新发布的二进制包,并解压到合适的位置。
wget https://downloads.apache.org/pinot/pinot-x.y.z/pinot-x.y.z-bin.tar.gz
tar -xzf pinot-x.y.z-bin.tar.gz
cd pinot-x.y.z
步骤3:启动集群
启动 Pinot 的简易本地模式,包括 Broker 和 Server。
./scripts/start-local-cluster.sh
步骤4:加载示例数据
使用内置的工具来加载数据集。
./bin/pinot-admin.sh add-table examples/tutorial/tutorialTableOffline true false pinot-push-record examples/tutorial/tutorialData.json.gz localhost:9092 tutorial_table
步骤5:查询数据
利用 Pinot 的 SQL 接口进行查询:
./bin/pinot-query.sh "SELECT COUNT(*) FROM tutorial_table WHERE year='2015'"
应用案例和最佳实践
- LinkedIn: 在LinkedIn中,Pinot支持超过50个用户面临的产品,每秒钟处理数百万事件和成千上万的查询,如“谁查看了我的档案”功能。
- UberEats: 餐厅经理应用程序利用Pinot提供实时分析,帮助餐馆优化运营。
最佳实践:
- 使用列式存储提高查询效率。
- 根据数据特性和查询模式选择合适的索引类型。
- 对于实时数据流,配置正确的摄取策略以保持低延迟。
典型生态项目
Apache Pinot 可与多种生态系统中的组件集成,包括但不限于大数据处理框架(如Hadoop, Spark)、消息队列(Kafka)以及可视化工具(如Grafana)。它也常与微服务架构中的数据流处理相结合,通过API或数据管道将数据实时传输至Pinot,支持即时分析需求。
整合这些生态系统项目时,通常涉及设置数据源(如配置Kafka作为数据输入流),确保数据模型与Pinot的表结构相匹配,并配置任何必要的索引和分区策略。
Apache Pinot的强大之处在于其高度灵活性和扩展性,使得在多种业务场景下都能发挥出其优势,无论是金融风控的实时分析、电商的销售监控,还是社交媒体活动的即时洞察,都是Pinot大显身手的好舞台。
通过上述引导,您现在应该已经对Apache Pinot有了初步的认识并能够快速地开始自己的项目尝试。深入探索它的高级特性和应用场景,可以参考官方文档以获取更详尽的指导和最佳实践建议。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00