Apache Pinot 开源项目实战指南
项目介绍
Apache Pinot 是一款实时分布式 OLAP 数据存储系统,旨在提供超低延迟的分析能力,以支持大规模数据流通过高吞吐量处理。最初由 LinkedIn 开发,Pinot 设计用于实现毫秒级响应时间的实时数据分析,适合于数据驱动决策及构建交互式分析应用。它具备高效的列式存储结构,可插拔索引技术,并且能够支持流式和批处理的数据摄入。
项目快速启动
要快速体验 Apache Pinot,您首先需要安装必要的环境。以下是一个简化的起始步骤,展示了如何搭建一个基本的 Pinot 环境。
步骤1:安装Java环境
确保您的系统中已安装 Java Development Kit (JDK) 8 或更高版本。
java -version
步骤2:下载并解压 Pinot
从 Apache Pinot 官方网站 下载最新发布的二进制包,并解压到合适的位置。
wget https://downloads.apache.org/pinot/pinot-x.y.z/pinot-x.y.z-bin.tar.gz
tar -xzf pinot-x.y.z-bin.tar.gz
cd pinot-x.y.z
步骤3:启动集群
启动 Pinot 的简易本地模式,包括 Broker 和 Server。
./scripts/start-local-cluster.sh
步骤4:加载示例数据
使用内置的工具来加载数据集。
./bin/pinot-admin.sh add-table examples/tutorial/tutorialTableOffline true false pinot-push-record examples/tutorial/tutorialData.json.gz localhost:9092 tutorial_table
步骤5:查询数据
利用 Pinot 的 SQL 接口进行查询:
./bin/pinot-query.sh "SELECT COUNT(*) FROM tutorial_table WHERE year='2015'"
应用案例和最佳实践
- LinkedIn: 在LinkedIn中,Pinot支持超过50个用户面临的产品,每秒钟处理数百万事件和成千上万的查询,如“谁查看了我的档案”功能。
- UberEats: 餐厅经理应用程序利用Pinot提供实时分析,帮助餐馆优化运营。
最佳实践:
- 使用列式存储提高查询效率。
- 根据数据特性和查询模式选择合适的索引类型。
- 对于实时数据流,配置正确的摄取策略以保持低延迟。
典型生态项目
Apache Pinot 可与多种生态系统中的组件集成,包括但不限于大数据处理框架(如Hadoop, Spark)、消息队列(Kafka)以及可视化工具(如Grafana)。它也常与微服务架构中的数据流处理相结合,通过API或数据管道将数据实时传输至Pinot,支持即时分析需求。
整合这些生态系统项目时,通常涉及设置数据源(如配置Kafka作为数据输入流),确保数据模型与Pinot的表结构相匹配,并配置任何必要的索引和分区策略。
Apache Pinot的强大之处在于其高度灵活性和扩展性,使得在多种业务场景下都能发挥出其优势,无论是金融风控的实时分析、电商的销售监控,还是社交媒体活动的即时洞察,都是Pinot大显身手的好舞台。
通过上述引导,您现在应该已经对Apache Pinot有了初步的认识并能够快速地开始自己的项目尝试。深入探索它的高级特性和应用场景,可以参考官方文档以获取更详尽的指导和最佳实践建议。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









