首页
/ 利用NNPACK加速的Darknet:在ARM设备上的高效目标检测框架

利用NNPACK加速的Darknet:在ARM设备上的高效目标检测框架

2024-05-21 08:09:20作者:齐添朝

项目介绍

NNPACK-darknet 是一个精心优化的版本,它基于 AlexeyAB/darknet,但不依赖GPU,特别适用于运行在ARM架构CPU上的嵌入式设备,如Raspberry Pi。通过集成[NNPACK](https)库,这个项目显著提高了在没有GPU支持的环境下的目标检测速度。

项目技术分析

该项目利用了PeachPy和confu工具进行编译构建,并选择了Ninja作为构建系统,以实现高效的自动化构建过程。最引人注目的是,它将NNPACK的性能提升引入到了Darknet中,这是一个用于神经网络计算的并行化库,能够充分利用多核处理器的能力。

对于Darknet的构建,项目提供了详细的步骤,包括安装必要的依赖项,例如PeachPy、confu、Ninja和Clang,并对不同的配置选项进行了说明,使得用户可以根据自己的需求选择是否启用NNPACK优化。

项目及技术应用场景

NNPACK-darknet 的主要应用场景是在资源有限但又需要实时目标检测功能的设备上,比如物联网(IoT)设备、无人机或者监控摄像头。特别是对于那些不具备GPU硬件的Raspberry Pi等小型计算平台,这个优化后的版本可以实现在较低功耗下快速准确的目标检测。

例如,在Raspberry Pi 4上,经过NNPACK优化的Darknet可以在保持良好精度的同时,大幅度减少预测时间,这对于实时应用来说是极其重要的。

项目特点

  • 无需GPU: NNPACK-darknet 能在无GPU环境下提供良好的目标检测性能。
  • 针对ARM CPU优化: 特别适合于ARM架构的嵌入式系统,如Raspberry Pi。
  • 高性能: 利用NNPACK库进行并行计算,大幅提升了运算速度。
  • 易于部署: 提供清晰的构建指南,方便用户在Raspberry Pi上安装和测试。
  • 预训练模型: 包含COCO和Pascal VOC数据集的预训练权重文件,可以直接用于测试。
  • 现成的Raspberry Pi OS Image: 提供预装了项目所需的Raspberry Pi操作系统镜像,简化了设置流程。

总的来说,NNPACK-darknet 是一个实用的开源项目,为ARM设备带来了强大的目标检测能力,对于想要在嵌入式系统中部署深度学习应用的开发者来说,是一个值得尝试的选择。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
154
1.98 K
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
508
44
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
194
279
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
992
395
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
940
554
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
339
11
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
70