AWS Deep Learning Containers发布TensorFlow 2.18.0 ARM64 CPU推理镜像
AWS Deep Learning Containers(DLC)项目是亚马逊云科技提供的一套预配置的深度学习环境容器镜像,旨在简化机器学习工作负载的部署和管理。这些容器镜像经过优化,包含了流行的深度学习框架及其依赖项,用户可以直接使用而无需自行配置环境。
近日,AWS DLC项目发布了针对ARM64架构的TensorFlow 2.18.0 CPU推理镜像,版本号为v1.23。这个镜像基于Ubuntu 20.04操作系统,预装了Python 3.10环境,专为在SageMaker服务上运行TensorFlow推理工作负载而优化。
镜像技术细节
该镜像的核心组件包括TensorFlow Serving API 2.18.0,这是TensorFlow官方提供的用于部署机器学习模型的高性能服务系统。镜像中还包含了常用的Python包如:
- PyYAML 6.0.2:用于配置文件处理
- boto3 1.36.18和botocore 1.36.18:AWS SDK for Python
- Cython 0.29.37:用于编写C扩展的Python库
- protobuf 4.25.6:Google的高效数据序列化工具
系统层面,镜像包含了必要的ARM64架构依赖库,如libgcc和libstdc++等,确保TensorFlow能够在ARM处理器上高效运行。值得注意的是,镜像中还包含了完整的Emacs编辑器及其相关组件,为开发者提供了便利的开发环境。
适用场景
这个ARM64架构的TensorFlow推理镜像特别适合以下场景:
- 需要在基于ARM架构的AWS实例(如Graviton系列)上部署TensorFlow模型的服务
- 希望利用ARM处理器成本效益优势的推理工作负载
- 使用AWS SageMaker服务进行模型部署的场景
- 需要轻量级CPU推理解决方案的项目
版本兼容性
该镜像基于TensorFlow 2.18.0版本构建,兼容Python 3.10环境。用户可以通过多个标签来引用这个镜像,包括通用的"2.18-cpu"和包含完整版本信息的"2.18.0-cpu-py310-ubuntu20.04-sagemaker-v1.23"等。
使用建议
对于需要在ARM架构上部署TensorFlow模型的用户,这个预构建的DLC镜像可以显著减少环境配置时间。由于镜像已经过AWS的优化和测试,用户可以直接专注于模型部署和业务逻辑开发,而无需担心底层依赖和兼容性问题。
对于生产环境,建议使用包含完整版本信息的镜像标签,以确保版本一致性。同时,用户应该根据实际需求评估是否需要在镜像基础上安装额外的依赖包。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









