AWS Deep Learning Containers发布TensorFlow 2.18.0 ARM64 CPU推理镜像
AWS Deep Learning Containers(DLC)项目是亚马逊云科技提供的一套预配置的深度学习环境容器镜像,旨在简化机器学习工作负载的部署和管理。这些容器镜像经过优化,包含了流行的深度学习框架及其依赖项,用户可以直接使用而无需自行配置环境。
近日,AWS DLC项目发布了针对ARM64架构的TensorFlow 2.18.0 CPU推理镜像,版本号为v1.23。这个镜像基于Ubuntu 20.04操作系统,预装了Python 3.10环境,专为在SageMaker服务上运行TensorFlow推理工作负载而优化。
镜像技术细节
该镜像的核心组件包括TensorFlow Serving API 2.18.0,这是TensorFlow官方提供的用于部署机器学习模型的高性能服务系统。镜像中还包含了常用的Python包如:
- PyYAML 6.0.2:用于配置文件处理
- boto3 1.36.18和botocore 1.36.18:AWS SDK for Python
- Cython 0.29.37:用于编写C扩展的Python库
- protobuf 4.25.6:Google的高效数据序列化工具
系统层面,镜像包含了必要的ARM64架构依赖库,如libgcc和libstdc++等,确保TensorFlow能够在ARM处理器上高效运行。值得注意的是,镜像中还包含了完整的Emacs编辑器及其相关组件,为开发者提供了便利的开发环境。
适用场景
这个ARM64架构的TensorFlow推理镜像特别适合以下场景:
- 需要在基于ARM架构的AWS实例(如Graviton系列)上部署TensorFlow模型的服务
- 希望利用ARM处理器成本效益优势的推理工作负载
- 使用AWS SageMaker服务进行模型部署的场景
- 需要轻量级CPU推理解决方案的项目
版本兼容性
该镜像基于TensorFlow 2.18.0版本构建,兼容Python 3.10环境。用户可以通过多个标签来引用这个镜像,包括通用的"2.18-cpu"和包含完整版本信息的"2.18.0-cpu-py310-ubuntu20.04-sagemaker-v1.23"等。
使用建议
对于需要在ARM架构上部署TensorFlow模型的用户,这个预构建的DLC镜像可以显著减少环境配置时间。由于镜像已经过AWS的优化和测试,用户可以直接专注于模型部署和业务逻辑开发,而无需担心底层依赖和兼容性问题。
对于生产环境,建议使用包含完整版本信息的镜像标签,以确保版本一致性。同时,用户应该根据实际需求评估是否需要在镜像基础上安装额外的依赖包。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00