SimpleRL-reason项目中的数学训练数据集解析
2025-06-23 09:47:44作者:宣海椒Queenly
SimpleRL-reason项目是一个专注于推理任务的开源强化学习框架,其核心在于利用不同难度级别的数学问题来训练和评估模型性能。该项目的研究团队在论文中详细阐述了他们如何构建训练数据集,并将其划分为三个难度等级。
数据集的分级策略
研究团队将数学问题数据精心划分为三个难度级别:
- 简单级别(Easy):包含GSM8K数据集和MATH数据集的1级难度问题
- 中等难度(Medium):涵盖MATH数据集的1-4级难度问题
- 困难级别(Hard):包含MATH数据集的3-5级难度问题
每个难度级别大约包含8000道题目,这种分级方式使得研究人员能够针对不同规模的模型选择适当难度的训练数据。
数据集的格式处理
为了适应不同模型的需求,研究团队对原始数据进行了两种格式的处理:
- 简化提示(abel格式):使用较为简洁的问题表述方式
- 复杂提示(qwen格式):采用更加详细和复杂的问题描述
这种双重格式处理使得数据集能够更好地适配不同架构和规模的模型,特别是对于那些对输入格式敏感的大型语言模型。
数据集的实际应用
在项目实践中,研究团队根据模型规模选择了不同难度的数据集:
- 较小规模的模型(如LLama-3.1-8B、Mistral-v0.1-7B等)使用简单级别数据
- 中等规模模型(Qwen2.5-0.5B)使用中等难度数据
- 较大规模模型(Mistral-Small-24B、Qwen-2.5系列等)则使用困难级别数据
这种数据分配策略体现了"量体裁衣"的思想,确保不同能力的模型都能获得适合其学习能力的数据。
技术实现要点
对于希望使用该数据集的研究人员,需要注意以下几点:
- 数据集以parquet格式存储,这是一种高效的列式存储格式
- 每个难度级别都包含训练集(train)和测试集(test)两部分
- 直接下载文件的方式比通过huggingface datasets接口更为可靠
该数据集的精心设计和处理为数学推理领域的研究提供了有价值的基准,特别是对于研究模型规模与问题难度之间关系的工作具有重要意义。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137