探索机器人技能学习新境界:RoboFlamingo 开源框架
在人工智能领域中,让机器人通过自然语言指令执行任务一直是一项富有挑战性的课题。而近期,我们有幸发现了一款名为 RoboFlamingo 的创新性框架,它为这个领域带来了新的突破。基于预训练的视觉-语言模型(VLM),RoboFlamingo 能够通过微调免费的离线模仿数据集,习得广泛的语言控制机器人技能。不仅在 CALVIN 评测基准上展现出显著超越现有技术的状态,并且仅需单个 GPU 服务器即可进行训练和评估,使得这项技术更加易用和高效。
项目介绍
RoboFlamingo 是一个以预训练 VLM 为基础的机器人学习框架,其核心在于将强大的 VLM 应用于机器人控制任务。该框架通过在单一 GPU 服务器上进行训练,即可实现对各种语言指令的响应,从而执行一系列复杂的操作。不仅如此,RoboFlamingo 还能通过在 CALVIN 数据集上的实验证明了其作为 VLM 在机器人控制中的强大潜力。
技术分析
RoboFlamingo 支持从 OpenCLIP 包导入多种预训练的视觉编码器,并支持来自 transformers 包的各种预训练语言模型。通过跨注意力层(cross-attention layers)的设计,模型能够有效地融合视觉和语言信息,实现精确的任务执行。此外,用户可以选择 LSTM、FC、扩散模型或 GPT 类型的解码器,以适应不同的任务需求。
应用场景
RoboFlamingo 框架特别适用于需要精细操作的机器人任务,例如物体抓取、放置、导航等。它可以在智能家居、工业自动化以及服务机器人等领域发挥巨大作用。借助自然语言指令,非专业人员也能轻松地操控机器人完成特定任务,降低了机器人应用的技术门槛。
项目特点
- 高性能: RoboFlamingo 在 CALVIN 评测中达到了前所未有的性能水平,表现远超同类方法。
- 易于部署: 只需一台配备适当 GPU 的服务器,就能进行模型的训练和评估。
- 兼容性强: 支持多种预训练 VLM 和视觉编码器,允许用户灵活选择最适合的模型。
- 普适性广: 可应用于多种类型的机器人任务,无论是简单的移动还是复杂的物体操纵都能胜任。
如果你对如何利用自然语言驱动机器人感兴趣,或者正在寻找一种简单高效的方式来提升你的机器人系统的智能水平,那么 RoboFlamingo 绝对值得你一试。立即行动,探索这个令人惊叹的开源项目,开启你的机器人技能学习之旅吧!
代码仓库链接: RoboFlamingo
论文链接: Vision-Language Foundation Models as Effective Robot Imitators
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00