探索机器人技能学习新境界:RoboFlamingo 开源框架
在人工智能领域中,让机器人通过自然语言指令执行任务一直是一项富有挑战性的课题。而近期,我们有幸发现了一款名为 RoboFlamingo 的创新性框架,它为这个领域带来了新的突破。基于预训练的视觉-语言模型(VLM),RoboFlamingo 能够通过微调免费的离线模仿数据集,习得广泛的语言控制机器人技能。不仅在 CALVIN 评测基准上展现出显著超越现有技术的状态,并且仅需单个 GPU 服务器即可进行训练和评估,使得这项技术更加易用和高效。
项目介绍
RoboFlamingo 是一个以预训练 VLM 为基础的机器人学习框架,其核心在于将强大的 VLM 应用于机器人控制任务。该框架通过在单一 GPU 服务器上进行训练,即可实现对各种语言指令的响应,从而执行一系列复杂的操作。不仅如此,RoboFlamingo 还能通过在 CALVIN 数据集上的实验证明了其作为 VLM 在机器人控制中的强大潜力。
技术分析
RoboFlamingo 支持从 OpenCLIP 包导入多种预训练的视觉编码器,并支持来自 transformers 包的各种预训练语言模型。通过跨注意力层(cross-attention layers)的设计,模型能够有效地融合视觉和语言信息,实现精确的任务执行。此外,用户可以选择 LSTM、FC、扩散模型或 GPT 类型的解码器,以适应不同的任务需求。
应用场景
RoboFlamingo 框架特别适用于需要精细操作的机器人任务,例如物体抓取、放置、导航等。它可以在智能家居、工业自动化以及服务机器人等领域发挥巨大作用。借助自然语言指令,非专业人员也能轻松地操控机器人完成特定任务,降低了机器人应用的技术门槛。
项目特点
- 高性能: RoboFlamingo 在 CALVIN 评测中达到了前所未有的性能水平,表现远超同类方法。
- 易于部署: 只需一台配备适当 GPU 的服务器,就能进行模型的训练和评估。
- 兼容性强: 支持多种预训练 VLM 和视觉编码器,允许用户灵活选择最适合的模型。
- 普适性广: 可应用于多种类型的机器人任务,无论是简单的移动还是复杂的物体操纵都能胜任。
如果你对如何利用自然语言驱动机器人感兴趣,或者正在寻找一种简单高效的方式来提升你的机器人系统的智能水平,那么 RoboFlamingo 绝对值得你一试。立即行动,探索这个令人惊叹的开源项目,开启你的机器人技能学习之旅吧!
代码仓库链接: RoboFlamingo
论文链接: Vision-Language Foundation Models as Effective Robot Imitators
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C089
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore暂无简介Jinja00