MiniFB 项目下载及安装教程
2024-12-14 22:27:46作者:幸俭卉
1. 项目介绍
MiniFB 是一个轻量级的 Ruby 库,用于与 Facebook API 进行交互。它简化了与 Facebook Graph API 的集成,提供了易于使用的接口,适用于需要在 Ruby 项目中与 Facebook 进行数据交互的开发者。
2. 项目下载位置
MiniFB 项目托管在 GitHub 上,可以通过以下步骤进行下载:
-
打开终端或命令行工具。
-
使用
git clone命令下载项目:git clone https://github.com/appoxy/mini_fb.git这将把项目文件下载到当前目录下的
mini_fb文件夹中。
3. 项目安装环境配置
在安装 MiniFB 之前,需要确保系统中已安装以下环境:
-
Ruby 环境:MiniFB 是一个 Ruby 库,因此需要安装 Ruby 解释器。可以通过以下命令检查 Ruby 是否已安装:
ruby -v如果未安装,可以通过以下命令安装:
sudo apt-get install ruby-full # 适用于 Ubuntu/Debian -
Bundler:Bundler 是一个 Ruby 的依赖管理工具,可以通过以下命令安装:
gem install bundler
环境配置示例
以下是配置环境的示例图片:


4. 项目安装方式
-
进入项目目录:
cd mini_fb -
使用 Bundler 安装项目依赖:
bundle install -
安装 MiniFB gem:
gem install mini_fb
5. 项目处理脚本
MiniFB 提供了一些示例脚本,用于演示如何与 Facebook API 进行交互。以下是一个简单的示例脚本:
require 'mini_fb'
# 获取 OAuth URL
oauth_url = MiniFB.oauth_url(
"YOUR_FB_APP_ID", # 你的 Facebook App ID
"http://localhost:3000/sessions/create", # 重定向 URL
:scope => MiniFB.scopes.join(" ") # 请求所有权限
)
puts "请访问以下 URL 进行授权: #{oauth_url}"
# 获取访问令牌
access_token_hash = MiniFB.oauth_access_token(
"YOUR_FB_APP_ID",
"http://localhost:3000/sessions/create",
"YOUR_FB_SECRET",
params[:code]
)
access_token = access_token_hash["access_token"]
# 使用访问令牌进行 API 调用
response_hash = MiniFB.get(access_token, "me", :fields => ["name", "email"])
puts "用户信息: #{response_hash}"
通过以上步骤,您可以成功下载、安装并使用 MiniFB 项目与 Facebook API 进行交互。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 PANTONE潘通AI色板库:设计师必备的色彩管理利器 移动端HTML医疗影像DICOM在线浏览解决方案:零足迹医疗图像查看器 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
648
149
Ascend Extension for PyTorch
Python
210
221
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
655
291
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
250
319
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
486
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.16 K
638
仓颉编程语言运行时与标准库。
Cangjie
136
874
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216